数学-近似计算根号3的小技巧

1、首先,我们知道 1 < √3 < 2,于是我们就有

对上述不等式进行开平方,可得

亦即

这表示 √3 比 2 小,且将 2 作为 √3 的近似值时,误差不超过 1/2。

2、对上述不等式再平方,有

 亦即

这说明 7/4 比 √3 大,且如果用 7/4 作为 √3 的近似值,误差小于 1/16。

3、将不等式 0 < 7/4-√3 < 1/16 再平方,即有

这说明 √3 ≈ 97/56,且误差小于 1/896。

4、如果还想知道 √3 的更加精确的近似值,那么可以继续对不等式进行平方。这里我们再演示一次:对 0 < 97−56√3 < 1/16 进行平方,有

这说明 √3 ≈ 18817/10864 ≈ 1.732 且误差小于 250 万分之一,这已经是 √3 相当好的近似值了。开平方的代码请移步:开平方的快速算法(C代码)


如若喜欢这篇文章,不妨留下您宝贵的点赞,这将是对我莫大的鼓励。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱上电路设计

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值