1、首先,我们知道 1 < √3 < 2,于是我们就有
对上述不等式进行开平方,可得
即
亦即
这表示 √3 比 2 小,且将 2 作为 √3 的近似值时,误差不超过 1/2。
2、对上述不等式再平方,有
即
亦即
这说明 7/4 比 √3 大,且如果用 7/4 作为 √3 的近似值,误差小于 1/16。
3、将不等式 0 < 7/4-√3 < 1/16 再平方,即有
即
这说明 √3 ≈ 97/56,且误差小于 1/896。
4、如果还想知道 √3 的更加精确的近似值,那么可以继续对不等式进行平方。这里我们再演示一次:对 0 < 97−56√3 < 1/16 进行平方,有
即
这说明 √3 ≈ 18817/10864 ≈ 1.732 且误差小于 250 万分之一,这已经是 √3 相当好的近似值了。开平方的代码请移步:开平方的快速算法(C代码)。
如若喜欢这篇文章,不妨留下您宝贵的点赞,这将是对我莫大的鼓励。