最优美公式-欧拉公式,轻松理解版

Alan Becker 创作的火柴人大战数学的打斗视频,风靡一时,并在 B 站荣耀斩获了“金知奖”。下面是网友对此视频的部分评价截图。

视频原址火柴人 vs 数学后续又一口气看完了“火柴人 vs 几何”与“火柴人 vs 物理”,通过火柴人的方式表现还是停新鲜的,作者别具一格。

这些视频里都或深或浅的穿插着一些数学与物理的知识,总是想写些什么,但都是被这样或那样的原因给耽搁了。今天下定决心试着解读一下其中的欧拉公式理解公式是为了更好地摆脱公式

贴一个“百度百科”的评价:它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底 e圆周率 π;两个单位:虚数单位i自然数的单位 1;以及被称为人类伟大发现之一的 0。数学家们评价它是“上帝创造的公式”。

下面准备从三个方面入手,尽我所能的做到通俗易懂的讲述欧拉公式是怎么来的?它又有什么用?

1、小e的前世今生

小 e 是一个数学中非常重要的常数,它与自然对数的底数相同,约为 2.718。它最初由数学家约翰·纳皮尔在研究复利时发现,可以表示连续复利的极限情况。

小 e 与圆周率 π 均为超越数,它们的性质独特且重要。对于 π,我们可以通过古老的割圆术来直观地理解其含义。π(C = πd→π = C/d) 表示任意一个圆的周长与其直径之间的比率,这是所有圆共有的一个基本比率。

小 e 则代表了所有持续增长过程所共有的基本增长率。​阮一峰翻译的文章《数学常数e的含义》说的很好,这里摘录如下:

某种类的一群单细胞生物每 24 小时全部分裂一次。在不考虑死亡与变异等情况下,那么很显然,这群单细胞生物的总数量每天都会增加一倍。据此我们可以写出它的增量公式:growth = 2x (x 表示天数)。

这个式子可以改写成:growth = (1+100%)*x 其中,1 表示原有数量,100% 表示单位时间内(24 小时)的增长率。

根据细胞生物学,每过 12 个小时,也就是分裂进行到一半的时候,平均会新产生一半原数量的新细胞,新产生的细胞在之后的 12 小时内已经在分裂了。

因此一天 24 个小时可以分成两个阶段,每一个阶段的细胞数量都在前一个阶段的基础上增长 50%,列出数学表达式:

亦即:

/gkimage/uw/dx/dz/uwdxdz.png

即在一个单位时间内,这些细胞的数量一共可以增至为原数量的 2.25 倍。

倘若这种细胞每过 8 小时就可以产生平均 1/3 的新细胞,新生细胞立即具备独立分裂的能力,那就可以将 1 天分成 3 个阶段,在一天内时间细胞的总数会增至:

/gkimage/cu/hb/iq/cuhbiq.png

即最后细胞数扩大为原数量的 2.37 倍。

实际上,这种分裂现象是不间断、连续的,每分每秒产生的新细胞,都会立即和母体一样继续分裂,一个单位时间(24 小时)最多可以得到多少个细胞呢?答案是:

/gkimage/k1/lj/i3/k1lji3.png

当增长率为 100% 保持不变时,在单位时间内细胞种群最多只能扩大 2.718……倍。数学家把这个数就称为 e,它的含义是单位时间内,持续的翻倍增长所能达到的极限值

所以小 e 的极限形式的数学表达式如下图:

关于小 e 更为详尽的内容,譬如著名的 72 定律、斐波那契螺线等,请移步:数学-e的自然之美

2、为什么i² = -1

引用一下以前我的一个知乎回答,数学中的数先是从一维数轴开始。

图2.1 一维数轴

因电路的阻抗计算中若幅值与相角同时用一个式子表示,也就是说数已经移动至二维空间,或者说只能在二维空间中才能很好的表示这个数

比如下图中的 C 表示为 -2+5i,它的模值为即阻抗的幅值,OB 与 x 轴的夹角 θ 即阻抗的相角。

在电路的计算中用 来代替 i,因为 在电路中表示电流,以示区分。

图2.2 二维数轴

复数最重要的性质就是是旋转量,即两个复数积的辐角等于各自辐角的和。

-1 位于实轴负半轴,辐角为 π(180°)。开平方,按照前面说的辐角的性质,即是辐角减半,变为 π/2(90°),也即虚轴正半轴上的 的位置。

或者反过来看,一个复数乘以 i,就相当于逆时针旋转 π/2(90°)。那么 i² = 1*i*i,就是把 1 旋转了 2次π/2(90°),正好落在 -1 上。

3、欧拉公式的由来

函数​的 n 阶麦克劳林公式分别如下:

​这样我们就可以手算的值了,或许 C 语言标准函数库的三角函数就是这样计算的,个人臆测哈!但实际上我们是可以这么操作的,取得近似值,达到工程的要求即可。

#include "math.h"

其中的麦克劳林公式和泰勒 Taylor 公式相关,有一个原函数(公式) ,再造一个图像与原函数图像相似的多项式函数(公式) ,为了保证相似,只需要保证两个函数在某一点的初始值相等、1 阶导数相等、2 阶导数相等、……,并且 n 阶导数都相等

这里我们令​,另外前面说过,从而得到:

简化一下:

​当时,即可得到最令人着迷最优美上帝创造的公式——欧拉公式

式①的共轭复数为:

利用三角函数的性质(数学-三角函数及其图像),三角函数 cos(θ) 和 sin(θ) 具有偶函数和奇函数的性质,那么

将这些性质代入式①的共轭复数,我们得到:

联立式①与式②,可以得到下面两个变换的式子:

4、欧拉公式的用途

那么这么优美的公式又有啥用途呢?

1)“信号与系统”在频域分析和信号处理中就需要用到,用它将信号从时域转换到频域,或者从频域转换到时域。

2)在交流电路分析中,欧拉公式用于将正弦电流和电压表示为复数形式,从而简化了电路的分析和计算。

3)在量子力学中,欧拉公式有助于理解和计算波函数,网上看来的。

欧拉公式在数学、物理、工程等多个领域都有着广泛的应用,它是连接实数与复数、三角函数与指数函数的重要桥梁。

5、欧拉的生平

欧拉晚年的时候,欧洲所有的数学家都把他当作老师,下面摘录自“百度百科”:

莱昂哈德·欧拉(Leonhard Euler ,1707 年 4 月 15 日~1783 年 9 月 18 日),瑞士数学家,13 岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导。

欧拉是科学史上最多产的一位杰出的数学家,他从 19 岁开始发表论文,直到 76 岁,他那不倦的一生,共写下了 886 本书籍和论文,其中在世时发表了 700 多篇论文。彼得堡科学院为了整理他的著作,整整用了 47 年。


如若喜欢这篇文章,不妨留下您宝贵的点赞,这将是对我莫大的鼓励。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱上电路设计

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值