Cell Genomics|从跨癌种的数据中,找到一个预测免疫治疗应答的signature| 单细胞+TCR数据,看懂免疫治疗谁能响应?| 一套跨癌种的预测模型

🔬单细胞大数据整合揭示:免疫治疗响应者的T细胞克隆更“聪明”?

👋 欢迎关注我的生信学习专栏~ 如果觉得文章有帮助,别忘了点赞、关注、评论,一起学习

一、研究亮点:76万细胞,6种癌种,解构T细胞克隆的应答逻辑

解读一篇Cell Genomics 近期上线的一项工作(Shorer et al., 2025)Single-cell meta-analysis of T cells reveals clonal dynamics of response to checkpoint immunotherapy,为“如何识别免疫治疗受益者”这个核心问题,带来了新思路。

研究团队通过整合12个公开scRNA/TCR-seq数据集,分析了来自6种癌种的767,606个T细胞,这可能是目前最大规模的免疫治疗相关T细胞克隆meta分析之一。高质量的配对单细胞RNA-seq与TCR测序数据,为解析肿瘤局部和外周T细胞的克隆扩增、转录状态变化及临床意义提供了前所未有的视角。


二、研究背景:局部扩增 vs 外周招募,谁才是ICI应答的主力?

免疫检查点抑制剂(Immune Checkpoint Inhibitors, ICIs)作为近年来抗肿瘤治疗的突破性手段,其有效性却显著依赖于患者的个体免疫状态。T细胞作为抗肿瘤免疫的核心执行者,其来源和激活状态在不同患者中的表现差异显著。

此前研究提出两种不同机制:

  • 克隆复苏(clonal revival):治疗激活了肿瘤局部的既有T细胞;
  • 克隆替代(clonal replacement):治疗从外周血招募新的T细胞克隆进入肿瘤。

本研究正是为回答:谁在主导抗肿瘤反应?T细胞的“身份”和“状态”如何关联临床结局?


三、研究主线与关键结论:Figure 精选解读

好的,下面我将结合文献中的主要图示(Figures 1–5),详细解析这篇文章的主要观点和结论,包括每个Figure所承载的关键信息,并辅以文字说明其科学意义。


Figure 1:T细胞克隆扩增特征与基础分布分析,扩增T细胞并非全是“好兵”

主要内容:

  • 在12个数据集中,作者共识别出767,606个T细胞,其中expanded clones 主要为CD8+ T细胞
  • 扩增T细胞呈现高细胞毒性基因(如 PRF1, GZMA/B)、T细胞激活和耗竭标志物(如 PDCD1, LAG3)表达
  • 肿瘤样本中,CXCL13 表达在扩增CD8+ T细胞中特异性升高,该基因已知与免疫治疗响应高度相关;
  • 使用Leiden聚类算法识别T细胞亚群,并分析其与响应状态的关联。

解析思考:

仅有扩增并不能保证治疗反应良好,因为某些扩增CD8+ T细胞簇在非反应者中富集(如GZMB+ clusters),这提示需要进一步挖掘其功能状态。

结论:仅凭扩增数量不足以预测疗效,还需关注其功能状态。


Figure 2:建立并验证扩增CD8+克隆的反应signature

主要内容:

  • 构建了由6个基因组成的响应signature(CXCL13, GZMK, HLA-DQA1 等),可区分 responders 和 non-responders;
  • AUC最高可达0.86(如在HNSCC、NSCLC和TNBC数据集中),在多癌种中表现稳定;
  • Signature在独立数据集中也表现良好,包括bulk RNA T细胞富集样本中(区分TILhi与TILlo)
  • 相比CXCL13单因子预测,本signature表现更优

解析思考:

这是通过scRNA/TCR-seq整合构建的可跨癌种泛化的反应signature,具备良好的临床转化潜力,未来或可用于患者分型与精准治疗指引。

结论:这是一套具有跨癌种泛化能力的免疫反应预测工具。


Figure 3:治疗后persistent克隆的转录程序变化

主要观点:

  • 治疗前后均存在的persistent clones进行cNMF程序分析,发现:
    • 响应者中,cytotoxic程序(GZMK-MHCII、FGFBP2-NKG7)显著上调
    • 非响应者则几乎无显著变化;
    • 同时,响应者中克隆规模扩大更显著;
  • 在metabolic程序中,LDHB-GSTK1(代谢程序)治疗后显著增强,提示代谢重编程参与克隆活化。

解析:

响应者的persistent clones 不仅保留,而且功能增强,表现为细胞毒性和代谢通路的上调;非响应者则可能维持在“无效”或“耗竭”状态。


Figure 4:de novo克隆的pseudo-temporal轨迹与反应关联

主要观点:

  • 基于GeneTrajectory方法,构建CD8+克隆从记忆 → 活化 → 耗竭 → 增殖的轨迹;
  • de novo clones在响应者中处于更后期(活化/增殖状态),伴随GZMB-checkpoints程序和ITGAE上调;
  • 这些clone体积更大,更可能源自肿瘤内局部激活
  • 非响应者中de novo clones处于早期或无明显激活状态。

结论拓展:

响应者中的de novo clones 具备更高的细胞毒性、组织驻留特征,提示局部克隆新生是有效免疫反应的关键机制

Figure3,4回答了响应者中的T细胞不仅扩增,还“进化”了这个问题。

结论:响应者的T细胞不仅数量多,而且功能更强、更“进化”,倾向于肿瘤局部再激活而非外周补充。


Figure 5:Tumor-Blood共享克隆与非反应关联

主要观点:

  • 分析三个配对数据集发现,非响应者中共享clone显著增多
  • 共享clone表现为FGFBP2-NKG7程序激活,ITGAE低表达
  • 使用FGFBP2-NKG7程序可作为共享clone的proxy,在多个独立数据集中,该程序在非响应者中更丰富

结论拓展:

非响应者T细胞主要通过外周招募产生“旁观者型”clone,而不是局部扩增/复苏,这类clone功能状态较差,可能无法发挥有效抗肿瘤作用。

结论:非响应者或主要依赖外周T细胞招募,但这些clone可能效能较差,功能未激活。


总体总结观点

方面响应者非响应者
克隆来源局部复苏 + de novo激活外周招募为主
克隆状态GZMK+, MHCII+, ITGAE+, LDHB+FGFBP2+, OXPHOS+, CD52+
免疫功能细胞毒活性强,代谢重编程耗竭/旁观者状态
临床意义良好预后,signature可预测免疫治疗耐受,潜在筛查靶点

四、这篇文章为何能登上 Cell Genomics

这篇文章之所以能发表在 Cell Genomics,我觉得可以有以下方面的值得学习:

选题热点:免疫治疗应答机制+T细胞克隆异质性,是当前肿瘤免疫学核心关注点;

多癌种整合视角:结合scRNA/TCR-seq数据,跨癌种meta分析,提升了结果的稳健性和普适性;

可转化价值强:构建的 expanded CD8+ response signature 在多个癌种和样本类型中均可区分响应状态,具备良好的预测潜力;

数据严谨,逻辑清晰:分层次对不同T细胞克隆(persistent/de novo/shared)进行深入追踪与机制分析,图文结合,信息丰富。


总结

这项工作通过对超过76万个T细胞的系统分析,揭示了免疫治疗应答者的T细胞具备更高质量的“局部扩增+功能激活”特征,而非响应者更多依赖“外周招募+状态疲软”的T细胞。构建的跨癌种signature为未来开发泛用型生物标志物提供了基础。

如果你正在研究肿瘤免疫治疗、TCR分析、单细胞多组学整合等方向,这篇文章可以学习借鉴。

👋 欢迎关注我的生信学习专栏~ 如果觉得文章有帮助,别忘了点赞、关注、评论,一起学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小鹏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值