AGV调度:路径规划

文章探讨了AGV调度系统中的路径规划模块设计,强调了路径规划模块独立的原因在于状态管理。提到在路径规划中常用A*、双向A*、D*或Dijkstra算法,并指出需调整代价以确保路径合理性。此外,文章还讨论了全局连通矩阵的生成,对比了Flody算法和优化Dijkstra算法的效率差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        这是我在参与AGV调度系统开发工作中形成的一些认识,是我的个人观点,想到什么写到什么。我自己也在学习,有不同观点可以一起讨论,由于涉及企业知识产权,所以我不会写具体实现以及一些核心的定制化的算法,文章内容仅供参考。

        AGV调度系统的路径规划通常是在已有的路径图上进行路径搜索规划,区别于此的是在自由空间上的路径规划。

        AGV的路径规划模块通常是提供AGV路径规划所需要的规划算法的模块,之所以独立成模块,而不是提供一个算法工具包DLL是因为路径规划中通常会涉及一些状态的使用。例如车辆的交管热力图,地图的区域配置以及库位货物信息等。所以独立成一个模块更利于状态的保存与获取,这样设计会更合理一些(?)。

        在不考虑库位及交管信息的情况下,通常AGV路径规划是需要提供一个规划接口的,这个接口传入规划起点和终点,返回规划出的路径线的数组。这个接口调用规划模块里面的具体实现。

        路径规划依赖于现场的地图,有些时候,为了避免单张地图过大,会对地图分区域。那么路径规划首先会根据任务的起点和终点以及车号,加载同时含有上述3者的区域地图(一般会做缓存)。

        在加载完地图之后就可以调用A*、双向A*、D*或者Dijkstra之类的算法去进行路径规划。这里需要注意一点,为使几种算法结果保持一致,同时也为了规划出的路径更合理,对于曲线以及变向线之类的需要增加其代价,否则启发式算法得到的解很可能不是最优的,会找出长度一样,但是多次变向的路径。另外对于双向A*算法,就算调整了代价,得到的也很可能不是最优解,这个后续说A*与双向A*算法的时候再分析。

        对于交管解锁的场景的时候,经常会频繁计算两点之间的规划距离以提供解锁的启发方向,这个时候规划模块还需要提供一个全局连通矩阵,这个矩阵不需要考虑状态,只需要快速给出两点间距离以避免每次都进行路径规划。这时候需要使用Flody算法或者多次堆优化Dijkstra算法在地图初始化的时候去生成这个矩阵。实践证明,使用多次堆优化Dijkstra算法来生成这个矩阵要比Flody算法的快的多(我的实现测下来差距是50倍)。

 

        

### AGV调度算法路径规划技术 #### A* 算法简介 A* 算法是一种启发式搜索算法,用于计算从起点到目标的最佳路径。该算法不仅考虑实际成本(即已知的移动代价),还引入了一个估计函数来预测剩余距离的成本。这种组合使得A*能够在保证一定准确性的同时提高搜索效率[^1]。 ```python def a_star_search(graph, start, goal): frontier = PriorityQueue() frontier.put(start, 0) came_from = {} cost_so_far = {} came_from[start] = None cost_so_far[start] = 0 while not frontier.empty(): current = frontier.get() if current == goal: break for next in graph.neighbors(current): new_cost = cost_so_far[current] + graph.cost(current, next) if next not in cost_so_far or new_cost < cost_so_far[next]: cost_so_far[next] = new_cost priority = new_cost + heuristic(goal, next) frontier.put(next, priority) came_from[next] = current return came_from, cost_so_far ``` 此代码片段展示了如何利用Python实现基本版的A*搜索逻辑。其中`graph`, `start`, 和`goal`分别代表地图模型、起始位置以及目的地;而`heuristic()`则是估算到达终点所需步数的方法之一。 #### 多AGV调度策略 对于多个AGV协同工作的情况,冯鲁波在其硕士论文《基于时间窗的多AGV调度策略研究》中提出了基于时间窗口的概念来进行优化调度。这种方法允许设定特定的时间范围,在这个范围内安排车辆执行任务,从而减少等待时间和冲突概率。此外,刘维民也在其研究中提到过类似的思路,并强调了图论的应用价值——即将整个操作区域映射成一张由节点和边组成的网络图,以便更好地管理和协调各台设备之间的互动关系[^3]。 #### MATLAB仿真验证 为了评估这些理论方案的实际效果,研究人员通常会在MATLAB这样的平台上构建模拟环境并开展实验测试。例如,在冯海双的研究项目里就包含了详细的仿真实验部分,证明了改进后的调度机制确实可以提升工作效率、缩短完成周期并且节约能源消耗[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值