【深度学习】教你怎样远程连接云服务器跑自己本地电脑上的代码

本文详细介绍了如何使用PyCharm通过AuToDL云服务器进行深度学习项目的远程开发,包括环境配置、SSH连接、新环境创建、数据集上传等步骤。

一、准备工作

  1. 自己要跑的代码包
  2. 本地电脑上打开、调试代码的工具----------本文使用PyCharm
  3. 远程连接用的深度学习云服务器环境------------本文使用AuToDL这款AI服务器(推荐使用,实惠好用)

二、演示工作

  1. 自己用到的代码包如下:
    在这里插入图片描述

  2. 用PyCharm打开代码包,如下:
    在这里插入图片描述

  3. 点击‘文件’----> ‘设置’-----------> ‘工具’----------> ‘SSH Configurations’,如下:
    在这里插入图片描述

  4. 如上图可看到,有已配置好的两个远程环境,现在要新配置一个环境,如下操作即可:
    点击“+”显示如下界面:(此时需要填写远程服务器的相关信息)
    在这里插入图片描述

  5. 注册、登录AuToDL云服务器,如下:(可看到已经配好的两个环境)

### 配置 VSCode 使用 SSH 连接远程服务器进行深度学习训练 #### 安装 Remote-SSH 插件 为了实现通过 SSH 连接远程服务器,需在 Visual Studio Code (VSCode) 的扩展市场中查找名为 `Remote - SSH` 的插件并安装该插件[^4]。 #### 设置 SSH 主机连接信息 完成插件安装之后,在左侧活动栏找到带有电脑图标的“远程资源管理器”。点击其下的齿轮图标进入 SSH 配置界面。在此处添加目标主机的信息,格式通常为 `<任意名称>@<服务器IP或域名>` 。随后保存配置文件以便后续操作使用[^1]。 #### 创建无密码登录机制 对于频繁访问的情况,建议设置免密登录方式提高效率。这可以通过在本地机器生成一对公私钥,并将公钥复制到远程服务器上的授权密钥列表里来达成。具体做法是在本地执行如下命令: ```bash ssh-keygen -t rsa -b 4096 -C "your_email@example.com" ssh-copy-id user@remote_host ``` 以上指令会引导用户创建新的 SSH 密钥对并将公钥安全地上传给指定的远程主机。 #### 构建适合深度学习工作的 Conda 虚拟环境 一旦成功建立了与远程服务器的安全连接,则可以在 VSCode 内部集成终端中启动 Anaconda 或 Miniconda 来构建专门用于支持 TensorFlow 或 PyTorch 等框架所需的 Python 解释器及其依赖库。例如: ```bash conda create --name dl_env python=3.8 conda activate dl_env pip install tensorflow-gpu==2.x.y # 替换版本号以匹配需求 ``` 上述过程确保了即使面对不同项目或者研究方向也能轻松切换不同的软件栈组合而不互相干扰[^3]。 #### 开始编写和调试代码 当一切准备就绪后,就可以利用 VSCode 提供的强大编辑功能以及丰富的插件生态系统来进行高效的开发工作了。同时还可以借助内置 Git 支持方便地管理和同步源码仓库;更值得一提的是,得益于良好的多平台兼容性和跨网络协作特性,团队成员之间也可以更加顺畅地共享成果并共同进步。
评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lingchen1906

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值