高等数学-定积分

1,定义

设函数f(x)在[a,b]上有界,在[a,b]中任意插入诺干个分点 a = x 0 &lt; x 1 &lt; x 2 &lt; . . . &lt; x n = b a=x_0&lt;x_1&lt;x_2&lt;...&lt;x_n=b a=x0<x1<x2<...<xn=b
把区间分成n个小区间
[ x 0 , x 1 ] , [ x 1 , x 2 ] , . . . , [ x n − 1 , x n ] [x_0,x_1],[x_1,x_2],...,[x_{n-1},x_n] [x0,x1],[x1,x2],...,[xn1,xn]
各个小区间的长度依次为
Δ x 1 = x 1 − x 0 , Δ x 2 = x 2 − x 1 , . . . , Δ x n = x n − x n − 1 . \Delta x_1=x_1-x_0,\Delta x_2=x_2-x_1,...,\Delta x_n=x_n-x_{n-1}. Δx1=x1x0,Δx2=x2x1,...,Δxn=xnxn1.
在每个小区间 [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi]上任取一点 ε i ( ε i ∈ [ x i − 1 , x i ] ) , 作 函 数 值 f ( ε i ) 与 小 区 间 Δ x i 的 乘 积 f ( ε i ) Δ x i , 并 求 和 \varepsilon_i (\varepsilon_i \in [x_{i-1},x_i]),作函数值f(\varepsilon_i)与小区间\Delta x_i的乘积f(\varepsilon_i)\Delta x_i,并求和 εi(εi[xi1,xi])f(εi)Δxif(εi)Δxi
S = ∑ i = 1 n f ( ε i ) Δ x i , S=\sum_{i=1}^{n}f(\varepsilon_i)\Delta x_i, S=i=1nf(εi)Δxi
λ = m a x { Δ x 1 , Δ x 2 , . . . , Δ x n } \lambda=max\{\Delta x_1, \Delta x_2,...,\Delta x_n\} λ=max{Δx1,Δx2,...,Δxn},如果不论对[a,b]怎样划分,也不论在小区间 [ x n − 1 , x n ] 上 点 ε i 怎 么 选 取 , 只 要 当 λ → 0 时 , 和 S 总 趋 于 确 定 的 极 限 I , 那 么 称 这 个 极 限 I 为 函 数 f ( x ) 在 区 间 [ a , b ] 上 的 定 积 分 , 记 作 f ( x ) = ∫ a b f ( x ) d x . [x_{n-1},x_n]上点\varepsilon_i怎么选取,只要当\lambda \to0时,和S总趋于确定的极限I,那么称这个极限I为函数f(x)在区间[a,b]上的定积分,记作f(x)=\int_{a}^{b}f(x)dx. [xn1,xn]εiλ0SIIf(x)[a,b]f(x)=abf(x)dx.
用符号表示为
∫ a b f ( x ) d x = I = lim ⁡ λ → 0 ∑ i = 1 n f ( ε i ) Δ x i , \int_{a}^{b}f(x)dx=I=\lim_{\lambda \to0}\sum_{i=1}^{n}f(\varepsilon_i)\Delta x_i, abf(x)dx=I=limλ0i=1nf(εi)Δxi其中f(x)叫做被积函数,f(x)dx叫做被积表达式,x叫做积分变量,a叫做积分下限,b叫做积分上限,[a,b]叫做积分区间。

2,定积分存在准则

2.1 如果f(x)在区间[a,b]上连续,则f(x)在该区间上可积。
2.2 如果函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在该区间上可积。

3,定积分的性质

3.1 设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则
m ( b − a ) &lt; = ∫ a b f ( x ) d x &lt; = M ( b − a ) m(b-a)&lt;=\int_{a}^{b}f(x)dx&lt;=M(b-a) m(ba)<=abf(x)dx<=M(ba);
3.2 定积分中值定理
如果函数f(x)在区间[a,b]上连续,则[a,b]上至少存在一点 ε , 使 得 下 式 成 立 : \varepsilon,使得下式成立: ε使
∫ a b f ( x ) d x = f ( ε ) ( b − a ) \int_{a}^{b}f(x)dx=f(\varepsilon)(b-a) abf(x)dx=f(ε)(ba)
积分中值定理的几何解释:在区间[a,b]上至少存在一点 ε \varepsilon ε,使得以区间[a,b]为底边,以曲线y=f(x)为曲边的曲边梯形的面积等于同一底边而高为 f ( ε ) f(\varepsilon) f(ε)的一个矩形的面积。

4,牛顿-莱布尼兹公式

如果函数F(x)是连续函数f(x)在区间[a,b]上的一个原函数,则
∫ a b f ( x ) d x = F ( b ) − F ( a ) . \int_{a}^{b}f(x)dx=F(b)-F(a). abf(x)dx=F(b)F(a).
上式表明:一个连续函数在区间[a,b]上的定积分等于它的任一原函数在区间[a,b]上的增量。

5,反常积分的定义

5.1 积分区间为无穷区间;
5.2 被积函数为无界函数。
通常要通过一些审敛法,来判断反常积分是否收敛。

6, Γ 函 数 \Gamma函数 Γ

6.1 定义
Γ ( s ) = ∫ 0 + ∞ e − x x s − 1 d x , \Gamma(s)=\int_{0}^{+\infin}e^{-x}x^{s-1}dx, Γ(s)=0+exxs1dx(s>0)。
6.2 递推公式
Γ ( s + 1 ) = s Γ ( s ) \Gamma(s+1)=s\Gamma(s) Γ(s+1)=sΓ(s)
Γ ( n + 1 ) = n ! \Gamma(n+1)=n! Γ(n+1)=n!
6.3 当 s → 0 + 时 , Γ ( s ) → + ∞ 当s\to0^+时,\Gamma(s)\to+\infin s0+Γ(s)+.
6.4 余元公式
Γ ( s ) Γ ( 1 − s ) = π s i n ( π s ) \Gamma(s)\Gamma(1-s)=\frac{\pi}{sin(\pi s)} Γ(s)Γ(1s)=sin(πs)π.

  • 6
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值