【期望DP+最短路】BZOJ4720 [NOIP2016]换教室

题面在这里

一道简单的期望DP题……

定义 f[i][j][0/1] 表示:
前i节课,已经用了j次申请机会,第i节课申请/不申请
那么显然,根据期望的线性性,可以得到:

f[i][j][0]=Min(f[i1][j][0]+w(c[i1],c[i]),f[i1][j][1]+k[i1]w(d[i1],c[i])+(1k[i1])w(c[i1],c[i]))

f[i][j][1]=Min(f[i1][j1][0]+k[i]w(c[i1],d[i])+(1k[i])w(c[i1],c[i]),f[i1][j1][1]+k[i]k[i1]w(d[i1],d[i])+k[i](1k[i1])w(c[i1],d[i])+(1k[i])k[i1]w(c[i],d[i1])+(1k[i])(1k[i1])w(c[i],c[i1]))

其中w(i,j)表示点i到点j的最短路径
那么用Floyd预处理出w(i,j)即可

附上代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define w(x,y) g[x][y]
using namespace std;
const int maxn=2005,maxv=305;
int n,m,v,e,g[maxv][maxv],c[maxn],d[maxn];
double k[maxn],f[maxn][maxn][2];
inline int red(){
    int tot=0,f=1;char ch=getchar();
    while (ch<'0'||'9'<ch) {if (ch=='-') f=-f;ch=getchar();}
    while ('0'<=ch&&ch<='9') tot=tot*10+ch-48,ch=getchar();
    return tot*f;
}
void floyd(){
    for (int k=1;k<=v;k++)
     for (int i=1;i<=v;i++)
      for (int j=1;j<=v;j++)
       g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
}
int main(){
    n=red(),m=red(),v=red(),e=red();
    for (int i=1;i<=n;i++) c[i]=red();
    for (int i=1;i<=n;i++) d[i]=red();
    for (int i=1;i<=n;i++) scanf("%lf",&k[i]);
    memset(g,63,sizeof(g));
    for (int i=1;i<=v;i++) g[i][i]=0;
    for (int i=1,x,y;i<=e;i++) x=red(),y=red(),g[x][y]=min(g[x][y],red()),g[y][x]=g[x][y];
    floyd();
    memset(f,127,sizeof(f));
    f[1][0][0]=f[1][1][1]=0;
    for (int i=2;i<=n;i++)
     for (int j=0,tj=min(i,m);j<=tj;j++){
        f[i][j][0]=f[i-1][j][0]+w(c[i-1],c[i]);
        f[i][j][0]=min(f[i][j][0],f[i-1][j][1]+k[i-1]*w(d[i-1],c[i])+(1-k[i-1])*w(c[i-1],c[i]));
        if (!j) continue;
        f[i][j][1]=f[i-1][j-1][0]+k[i]*w(c[i-1],d[i])+(1-k[i])*w(c[i-1],c[i]);
        f[i][j][1]=min(f[i][j][1],f[i-1][j-1][1]+ k[i]*k[i-1]*w(d[i-1],d[i]) + k[i]*(1-k[i-1])*w(c[i-1],d[i]) + (1-k[i])*k[i-1]*w(c[i],d[i-1]) + (1-k[i])*(1-k[i-1])*w(c[i],c[i-1]));
     }
    double ans=1e100;
    for (int j=0;j<=m;j++) ans=min(ans,min(f[n][j][0],f[n][j][1]));
    printf("%.2lf",ans);
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值