机器学习实践系列之10 - OpenCV实战立体视觉

本文深入探讨了利用OpenCV进行立体视觉的实践,重点介绍了StereoSGBM算法,一种半全局匹配方法,用于解决双目视觉中的深度检测和视差计算问题。虽然比BM算法计算量大,但能获得更清晰的视差图。通过链接可查阅OpenCV官方文档获取更多详情。
摘要由CSDN通过智能技术生成

       立体视觉 是通过图像间的对应关系,根据三角测量原理,得到视差图,主要过程包括:摄像机标定、立体标定、立体校正、计算视差图

       在得到视差信息后,很容易根据投影模型 计算原始图像的深度,立体匹配技术被 认为是立体视觉中最困难也是最关键的问题,容易受 光照、噪声、非显著纹理(特征)等问题影响,无法得到较好的匹配效果。

       本节主要讲解 OpenCV 自带立体视觉模块 StereoSGBM

       StereoSGBM 是一种 半全局匹配算法,对比 BM算法 StereoBM (块匹配,Block Matching)视差图轮廓更清晰,但是计算量稍大。

       详细说明可以参考OpenCV的在线文档:http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html


       来看实现效果:



参考代码:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值