Re-ID: Reidentification by Relative Distance Comparison 论文解析

本文解析了Re-Identification by Relative Distance Comparison论文,探讨了行人再识别的挑战,如生物特征不可靠、环境变化等。研究重点在于优化距离测量方法,提出RDC模型和Ensemble RDC解决欠采样和局部最优问题,并对比了RDC与其他方法的优劣,如Adaboost、PLS、LMNN和RankSVM。未来研究方向包括利用人群信息辅助行人重识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:刚刚看完了这篇论文,顺便整理了一下这篇论文的思路,还是得膜一下伟诗大佬,666

论文地址:Person Re-identification


论文解析

  • Matching people across nonoverlapping camera views at different locations and different time.
  • RE-ID的一个经典的简化设定是一个probe set(比如包括p1, p2, p3三张图,分别对应三个不同的人)和一个gallery set(g1, g2, g3)。p和g分别来自不同的camera view,probe set中的p是要查找的人,而gallery set中的g相当于一个小型数据库,我们要从中找到proset中的人,假设(p1, g1),(p2, g2),(p3, g3)是正确的匹配。假如我要寻找p1这个人,就是计算p1与(g1, g2, g3)的距离,然后做一个ranking。理想情况下,g1应该排在rank1。rank n accuracy指的是在rank n及其之前就找到了正确匹配的人的比例。
  • Challenge
    • In a busy uncontrolled enviroment monitored by cameras from a distance, person verification relying upon biometric such as face and gait is infeasible and unreliable.(在一个复杂的环境下行人的生物特征不明显)
    • As the transition time between disjoint cameras varies greatly from individual to individual with uncertainty, it is hard to impose accurate temporal and spatial constrains.(时间跨度不同,不能用准确的空间约束条件)
    • The visual appearance features, extract mainly from the clothing and shapes of people, are intrinsically for matching people. (就是指这些特征并不具有代表性). In addition, a person’s appearance often undergoes large variations accross non-overlapping camera views due to significant changes in view angle, lighting, background clutter, and occlusion。(这导致了不同的人在不同的camera views下比同一个人更加相似)
  • Two steps to deal with RE-ID
    • A feature representation is computed from both the query and each of the gallery image
    • The distance between each pair of potential matches is measure
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值