引言
应用于永磁同步电机的转子位置估计方法有多种,常用观测电机反电动势或观测电机磁链的方式估计转子位置,针对不同的观测状态量又有多种不同的观测方法。以下使用滑模观测器观测电机反电动势,进而估计永磁同步电机转子位置。
文章目录
一、 滑模观测器位置估计原理简介
1.当电机转动起来后,在定子绕组切割永磁体磁感线产生反电动势(发电机原理),当αβ轴方向反电动势已知时,电机转子位置可以确定。
θe = arctg(-eα/eβ),此处θ为转子电角度。
2.电机电流微分方程为
piα = -R/L·iα + 1/L(vα - eα)
piβ = -R/L·iβ + 1/L(vβ - eβ)
其中p为微分算子。
式中iα,iβ可测量,eα,eβ不可测量
3.使用滑模观测器误差信号代替eα,eβ,将iα,iβ作为观测量。
p’iα = -R/L·'iα + 1/L(vα - zα)
p’iβ = -R/L·'iβ + 1/L(vβ - zβ)
其中p为微分算子,'iα,'iβ为估计电流,zα,zβ为反电动势的误差信号。
比较上述两组方程,容易看出,当’iα = iα,'iβ = iβ时,zα = eα,zβ = eβ
4.确定切换函数
令
zα = ksgn('iα - iα)
zβ = ksgn('iβ - iβ)
其中sgn()为符号函数。
使用估计值与测量值的误差控制开关,此时问题就转化成了寻找合适的k,使得观测器收敛。
5.综上,简单的说,使用滑模观测器进行反电动势估计,就是构建模型,使得估计电流趋近实际电流,取此时的切换函数开关信号等效反电动势。
二、搭建simulink 滑模观测器模型
针对eα,eβ分别搭建滑模观测器:
选择合适的k使得iα - 'iα趋近于0,iβ - 'iβ趋近于0。
黄色信号为α的误差,蓝色信号为β轴的误差。
测试时存在负载突变,所以误差信号出现尖峰,尖峰信号在可接受的范围内。
图中黄色信号为iα蓝色信号为iβ
与误差波形对比,可见观测器的跟踪性能是极好的。
三、获得反电动势估计值
因为αβ轴的电流观测误差接近0,所以可以认为此时zα,zβ与eα,eβ等效,但是zα,zβ为开关信号,需要经过滤波才能得到反电动势的等效值。
zα信号波形如图。
构建iir低通滤波器f(n+1) = k * x(n) + (1-k) * f(n),k = 0.0002
分别对zα,zβ滤波,得到’eα,'eβ
'eα,'eβ波形如图,电流波动导致0.008处的尖峰。
与电机转速对比:
图中,第一个信号为电机转速,可见在0.008后,电机转速保持稳定,虽然电机负载变化较大,但是反电动势观测值不随负载变化而变化,符合反电动势的属性。
四、计算转子电角度
上文提到θe = arctg(-eα/eβ)
根据反电动势容易计算转子电角度
图中黄色波形为转子电角度估计值,蓝色为转子电角度真实值。
可见,在初始状态,低通滤波未产生作用,观测结果不可用,但是随着低通滤波器产生作用,位置估计结果很快稳定,并且能够准确的跟随真实位置。但是低通滤波器引入了不可忽略的相位延时。
五、更优的观测方法
分析以上仿真结果,注意到上述方式虽然能够得到准确的估计位置,但是同时引入了较大延时,为了实现较好的控制性能需要计算出延时长度,并作出补偿。这样难免会增加计算量,并影响动态响应性能。想要更准确的观测结果必须改进观测方法以降低延时。
5.1 延时分析
直观的看,延时是低通滤波器过强的滤波系数导致的,而选取较强的滤波系数是因为滑膜观测器的输出有极大的抖振,必须较强的滤波系数才能使结果平滑。这就和低延时产生了矛盾。
5.2 降低延时
根据上述分析,延时的根本原因在于滑膜观测器的抖振,必须减小观测器的抖振,才能从根本上降低延时。考虑到抖振由k * sgn(err)函数引起,将其线性化为k*err,并对其限幅。理论上只要减小抖振就可以降低对低通滤波器的要求,进而减小延时。
5.3 模型验证
将滑膜观测器修改为带限幅的pi调节器,将其输出,限幅到正负150V,此处限幅设置的原则是与电机反电动势幅值相当。降低滤波器的滤波强度。
修改后的观测器如下:
运行仿真,结果如下:
可见,观测位置延时得到极大的改善,在用作闭环控制时,该方法能够较好的改善环路的动态响应,但是在电流发生较大变化时(0.008处)位置估计出现较大误差。
六、小结
文中滑模观测器只是用来估计转子位置,并没有用于环路控制,控制用的转子位置信号由位置传感器得到。
该观测器鲁棒性好,能够容忍较大的模型参数误差,在仿真中,将定子电感增加100%,定子电阻减少50%,依然能够观测到转子位置,但是在速度较小时误差更大。
本文的仿真模型下载链接如下,模型使用matlab2018a版本搭建。
Simulink永磁同步电机控制仿真系列五matlab2018a仿真模型
喜欢的小伙伴点赞哦。