动态规划学习(一)

一组数字,选择其中的一些数字后求和,不能选择相邻的,求其中的和最大的方案。

思路:用arry数组来存储数字

opt数组:opt[6]代表有前6个数字时的最好方案;opt[3]代表有前3个数字时的最好方案

递归方程:opt[i] = max{ arry[i] + opt[i-2] , opt[i-1] }

递归出口:opt[0] = arry[0] ; opt[1] = max{ arry[1] , arry[0] }

#include <iostream>
using namespace std;
int arry[10000];
int opt[10000];
int main()
{
	int n = 1;
	cin >> n;//读入数字个数
	for(int i=0;i<n;i++)
	{
		cin >> arry[i];
	}
	opt[0] = arry[0];
	opt[1] = max(arry[0], arry[1]);
	for (int i = 2; i < n; i++)
	{
		opt[i] = max(opt[i - 1], arry[i] + opt[i - 2]);
	}
	if(n > 0)
    {
        cout << opt[n-1] << endl;
    }
    return 0;
}

 样例:1 2 4 1 7 8 3

输出:15

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值