抽样信号的傅里叶变换——信号与系统小结(2)

1 典型函数的傅里叶级数、傅里叶变换

1.1 单位冲激函数

单位冲激函数记作 δ ( t ) \delta(t) δ(t)。定义为:

{ ∫ − ∞ ∞ δ ( t ) d t = 1 δ ( t ) = 0 ( t ≠ 0 ) (1.1) \left\{\begin{array}{l} {\int_{-\infty}^{\infty} \delta(t) \mathrm{d} t=1} \\ {\delta(t)=0} \end{array} \quad(t \neq 0)\right. \tag{1.1} {δ(t)dt=1δ(t)=0(t=0)(1.1)

如果冲激出现在 t = t 0 t=t_0 t=t0,则定义为:

{ ∫ − ∞ ∞ δ ( t − t 0 ) d t = 1 δ ( t − t 0 ) = 0 ( t ≠ t 0 ) (1.2) \left\{\begin{array}{l} {\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) \mathrm{d} t=1} \\ {\delta\left(t-t_{0}\right)=0} \end{array} \quad\left(t \neq t_{0}\right)\right. \tag{1.2} {δ(tt0)dt=1δ(tt0)=0(t=t0)(1.2)

单位冲激函数的抽样特性(或称之为 筛选特性):

∫ − ∞ ∞ δ ( t − t 0 ) f ( t ) d t = ∫ − ∞ ∞ δ ( t − t 0 ) f ( t 0 ) d t = f ( t 0 ) (1.3) \int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) f(t) \mathrm{d} t=\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) f\left(t_{0}\right) \mathrm{d} t=f\left(t_{0}\right) \tag{1.3} δ(tt0)f(t)dt=δ(tt0)f(t0)dt=f(t0)(1.3)

1.2 周期冲激函数序列的傅里叶级数

用符号 δ T ( t ) \delta_{T}(t) δT(t)来表示周期单位冲激序列,即

δ T ( t ) = ∑ n = − ∞ ∞ δ ( t − n T s ) (1.4) \delta_{T}(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right) \tag{1.4} δT(t)=n=δ(tnTs)(1.4)

展开成傅里叶级数

δ T ( t ) = ∑ n = − ∞ ∞ δ ( t − n T s ) = ∑ n = − ∞ ∞ F n e j n ω s t (1.5) \delta_{T}(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_s t} \tag{1.5} δT(t)=n=δ(tnTs)=n=Fnejnωst(1.5)

其中

F n = 1 T s ∫ − T s 2 T s 2 δ T ( t ) e − j n ω s t d t = 1 T s ∫ − T s 2 T s 2 δ ( t ) e − j n ω s t d t = 1 T s (1.6) \begin{aligned} F_{n} &=\frac{1}{T_{s}} \int_{-\frac{T_{s}}{2}}^{\frac{T_{s}}{2}} \delta_{T}(t) \mathrm{e}^{-jn \omega_{s} t} \mathrm{d} t \\ &=\frac{1}{T_{s}} \int_{-\frac{T_{s}}{2}}^{\frac{T_{s}}{2}} \delta(t) \mathrm{e}^{-j n \omega_{s} t} \mathrm{d} t \\ &=\frac{1}{T_{s}} \end{aligned} \tag{1.6} Fn=Ts12Ts2TsδT(t)ejnωstdt=Ts12Ts2Tsδ(t)ejnωstdt=Ts1(1.6)

那么

δ T ( t ) = 1 T s ∑ n = − ∞ ∞ e j n ω s t (1.7) \delta_{T}(t)=\frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} e^{j n \omega_s t} \tag{1.7} δT(t)=Ts1n=ejnωst(1.7)

δ T ( t ) \delta_{T}(t) δT(t)的傅里叶变换为

F [ f ( t ) ] = 2 π ∑ n = − ∞ ∞ F n δ ( ω − n ω s ) (1.8) \mathscr{F}[f(t)]=2 \pi \sum_{n=-\infty}^{\infty} F_{n} \delta\left(\omega-n \omega_{s}\right) \tag{1.8} F[f(t)]=2πn=Fnδ(ωnωs)(1.8)

F n = 1 T 1 F_n=\frac{1}{T_1} Fn=T11代入式 1.8 {1.8} 1.8,得

F ( ω ) = F [ δ T ( t ) ] = ω s ∑ n = − ∞ ∞ δ ( ω − n ω s ) (1.9) F(\omega)=\mathscr{F}\left[\delta_{T}(t)\right]=\omega_{s} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{s}\right) \tag{1.9} F(ω)=F[δT(t)]=ωsn=δ(ωnωs)(1.9)

1.9 {1.9} 1.9式可见,周期单位冲激序列的傅里叶变换中,只包含位于 n ω s n\omega_s nωs处的冲激函数,强度是相等的,均等于 ω s \omega_s ωs

2 抽样信号的傅里叶变换

主要看时域抽样。

令:

连续信号 f ( t ) f(t) f(t)的傅里叶变换为

F ( ω ) = F [ f ( t ) ] (2.1) F(\omega)=\mathscr{F}[f(t)] \tag{2.1} F(ω)=F[f(t)](2.1)

抽样脉冲序列 p ( t ) p(t) p(t)的傅里叶变换为

P ( ω ) = F [ p ( t ) ] (2.2) P(\omega)=\mathscr{F}[p(t)] \tag{2.2} P(ω)=F[p(t)](2.2)

抽样后信号 f s ( t ) f_s(t) fs(t)的傅里叶变换为

F s ( ω ) = F [ f s ( t ) ] (2.3) F_s(\omega)=\mathscr{F}[f_s(t)] \tag{2.3} Fs(ω)=F[fs(t)](2.3)

采用均匀抽样,抽样周期为 T s T_s Ts,抽样频率为 ω s = 2 π T s \omega_s=\frac{2\pi}{T_s} ωs=Ts2π

一般情况下,抽样过程是抽样脉冲序列 p ( t ) p(t) p(t)和和连续信号 f ( t ) f(t) f(t)相乘,即:

f s ( t ) = f ( t ) p ( t ) (2.4) f_s(t)=f(t)p(t) \tag{2.4} fs(t)=f(t)p(t)(2.4)

因为 p ( t ) p(t) p(t)是周期信号,那么 p ( t ) p(t) p(t)的傅里叶变换等于

P ( ω ) = 2 π ∑ n = − ∞ ∞ P n δ ( ω − n ω s ) (2.5) P(\omega)=2 \pi \sum_{n=-\infty}^{\infty} P_{n} \delta\left(\omega-n \omega_{s}\right) \tag{2.5} P(ω)=2πn=Pnδ(ωnωs)(2.5)

其中

P n = 1 T s ∫ − T s 2 T s 2 p ( t ) e − j n ω s t d t (2.6) P_{n}=\frac{1}{T_{s}} \int_{-\frac{T_{s}}{2}}^{\frac{T_{s}}{2}} p(t) \mathrm{e}^{-\mathrm{j} n \omega_{s} t} \mathrm{d} t \tag{2.6} Pn=Ts12Ts2Tsp(t)ejnωstdt(2.6)

根据频域卷积定理 F [ f 1 ( t ) ⋅ f 2 ( t ) ] = 1 2 π F 1 ( ω ) ∗ F 2 ( ω ) \mathscr{F}\left[f_{1}(t) \cdot f_{2}(t)\right]=\frac{1}{2 \pi} F_{1}(\omega) * F_{2}(\omega) F[f1(t)f2(t)]=2π1F1(ω)F2(ω),可知

F s ( ω ) = 1 2 π F ( ω ) ∗ P ( ω ) = ∑ n = − ∞ ∞ P n F ( ω − n ω s ) (2.7) F_{s}(\omega)=\frac{1}{2 \pi} F(\omega) * \mathrm{P}(\omega)=\sum_{n=-\infty}^{\infty} P_{n} F\left(\omega-n \omega_{s}\right) \tag{2.7} Fs(ω)=2π1F(ω)P(ω)=n=PnF(ωnωs)(2.7)

如果抽样脉冲序列 p ( t ) p(t) p(t)为冲激序列,称之为“冲激抽样”或者“理想抽样”。那么:

p ( t ) = δ T ( t ) = ∑ n = − ∞ ∞ δ ( t − n T s ) (2.8) p(t)=\delta_{T}(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right) \tag{2.8} p(t)=δT(t)=n=δ(tnTs)(2.8)

f s ( t ) = f ( t ) p ( t ) = f ( t ) ∑ n = − ∞ ∞ δ ( t − n T s ) (2.9) f_{s}(t)=f(t) p(t)=f(t) \sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right) \tag{2.9} fs(t)=f(t)p(t)=f(t)n=δ(tnTs)(2.9)

由上面的分析可得冲激抽样信号的频谱为:

F s ( ω ) = 1 T s ∑ n = − ∞ ∞ F ( ω − n ω s ) (2.10) F_{s}(\omega)=\frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} F\left(\omega-n \omega_{s}\right) \tag{2.10} Fs(ω)=Ts1n=F(ωnωs)(2.10)

2.10 {2.10} 2.10式可以看出,经过冲激序列抽样后的信号傅里叶变换为原信号的傅里叶变换以 ω s \omega_s ωs为周期重复,幅度被 1 T s \frac{1}{T_s} Ts1加权。

在实际中,可以近似认为是冲激抽样。

  • 16
    点赞
  • 67
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值