【深度学习】现代循环神经网络(二)

4.双向循环神经网络(Bi-RNN)

4.1 隐马尔可夫模型中的动态规划

假设有一个隐变量模型:在任意时间步t,假设存在某个隐变量 h t h_t ht,通过概率 P ( x t ∣ h t ) P(x_t|h_t) P(xtht) 控制我们观测到的 x t x_t xt。此外,任何 h t → h t + 1 h_t \to h_{t+1} htht+1 转移都是由一些状态转移概率 P ( h t + 1 ∣ h t ) P(h_{t+1}|h_t) P(ht+1ht) 给出。这个概率图模型就是一个隐马尔可夫模型(hidden Markov model, HMM),如下图所示。
在这里插入图片描述

因此,对于有 T \mathbf{T} T 个观测值的序列,在观测状态和隐状态上具有以下联合概率分布:
在这里插入图片描述

现在假设我们观测到所有的 x i x_i xi,除了 x j x_j xj,并且我们的目标是计算 P ( x j ∣ x − j ) P(x_j \mid x_{-j}) P(xjxj),其中 x − j = ( x 1 , … , x j − 1 , x j + 1 , … , x T ) x_{-j} = (x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{T}) xj=(x1,,xj1,xj+1,,xT)。由于 P ( x j ∣ x − j ) P(x_j \mid x_{-j}) P(xjxj) 中没有隐变量,因此我们考虑对 h 1 , … , h T h_1, \ldots, h_T h1,,hT 的选择构成的所有可能的组合进行求和。如果任何 h i h_i hi可以接受k个不同的值(有限的状态数),这意味着我们需要对 k T k^T kT个项求和,这个任务显然难于登天。幸运的是,有一个巧妙的解决方案:动态规划(dynamic programming)。
要了解它的工作方式,请考虑对隐变量 h 1 , … , h T h_1, \ldots, h_T h1,,hT的依次求和。可以得出:
在这里插入图片描述

通常,我们将前向递归(forward recursion)写为:
在这里插入图片描述

递归被初始化为 π 1 ( h 1 ) = P ( h 1 ) \pi_1(h_1) = P(h_1) π1(h1)=P(h1)。符号简化,也可以写成 π t + 1 = f ( π t , x t ) \pi_{t+1} = f(\pi_t, x_t) πt+1=f(πt,xt),其中f是一些可学习的函数。这看起来就像我们在循环神经网络中讨论的隐变量模型中的更新方程。
与前向递归一样,我们也可以使用后向递归对同一组隐变量求和。这将得到:
在这里插入图片描述

因此,我们可以将后向递归(backward recursion)写为:
在这里插入图片描述

初始化 ρ T ( h T ) = 1 \rho_T(h_T) = 1 ρT(hT)=1。前向和后向递归都允许我们对T个隐变量在
O ( k T ) \mathcal{O}(kT) O(kT)(线性而不是指数)时间内对 ( h 1 , … , h T ) (h_1, \ldots, h_T) (h1,,hT)的所有值求和。这是使用图模型进行概率推理的巨大好处之一。它也是通用消息传递算法的一个非常特殊的例子。结合前向和后向递归,我们能够计算:
在这里插入图片描述

因为符号简化的需要,后向递归也可以写为 ρ t − 1 = g ( ρ t , x t ) \rho_{t-1} = g(\rho_t, x_t) ρt1=g(ρt,xt),其中g是一个可以学习的函数。同样,这看起来非常像一个更新方程,只是不像我们在循环神经网络中看到的那样前向运算,而是后向计算。事实上,知道未来数据何时可用对隐马尔可夫模型是有益的。信号处理科学家将是否知道未来观测这两种情况区分为内插和外推。

4.2 双向模型

如果我们希望在循环神经网络中拥有一种机制,使之能够提供与隐马尔可夫模型类似的前瞻能力,我们就需要修改循环神经网络的设计。幸运的是,这在概念上很容易,只需要增加一个“从最后一个词元开始从后向前运行”的循环神经网络,而不是只有一个在前向模式下“从第一个词元开始运行”的循环神经网络。双向循环神经网络(Bidirectional RNNs)添加了反向传递信息的隐藏层,以便更灵活地处理此类信息,下图描述了具有单个隐藏层的双向循环神经网络的架构。
在这里插入图片描述

事实上,这与隐马尔可夫模型中的动态规划的前向和后向递归没有太大区别。 其主要区别是,在隐马尔可夫模型中的方程具有特定的统计意义。 双向循环神经网络没有这样容易理解的解释, 我们只能把它们当作通用的、可学习的函数。 这种转变集中体现了现代深度网络的设计原则: 首先使用经典统计模型的函数依赖类型,然后将其参数化为通用形式。

4.2.1 模型定义

对于任意时间步t,给定一个小批量的输入数据 X t ∈ R n × d \mathbf{X_t} \in \mathbb{R}^{n \times d} XtRn×d (样本数n,每个示例中的输入数为d),并且令隐藏层激活函数为 ϕ \phi ϕ。在双向架构中,设改时间步的前向和反向隐状态分别为 H t → ∈ R n × h \overrightarrow{\mathbf{H_t}} \in \mathbb{R}^{n \times h} Ht Rn×h H t ← ∈ R n × h \overleftarrow{\mathbf{H_t}} \in \mathbb{R}^{n \times h} Ht Rn×h,其中h是隐藏单元的数目。前向和反向隐状态的更新如下:
H → t = ϕ ( X t W x h ( f ) + H → t − 1 W h h ( f ) + b h ( f ) ) H ← t = ϕ ( X t W x h ( b ) + H ← t + 1 W h h ( b ) + b h ( b ) ) \begin{array}{l} \overrightarrow{\mathbf{H}}_{t}=\phi\left(\mathbf{X}_{t} \mathbf{W}_{x h}^{(f)}+\overrightarrow{\mathbf{H}}_{t-1} \mathbf{W}_{h h}^{(f)}+\mathbf{b}_{h}^{(f)}\right) \\ \overleftarrow{\mathbf{H}}_{t}=\phi\left(\mathbf{X}_{t} \mathbf{W}_{x h}^{(b)}+\overleftarrow{\mathbf{H}}_{t+1} \mathbf{W}_{h h}^{(b)}+\mathbf{b}_{h}^{(b)}\right) \end{array} H t=ϕ(XtWxh(f)+H t1Whh(f)+bh(f))H t=ϕ(XtWxh(b)+H t+1Whh(b)+bh(b))
其中,权重 W x h ( f ) ∈ R d × h , W h h ( f ) ∈ R h × h , W x h ( b ) ∈ R d × h , W h h ( b ) ∈ R h × h \mathbf{W}_{x h}^{(f)} \in \mathbb{R}^{d \times h}, \mathbf{W}_{h h}^{(f)} \in \mathbb{R}^{h \times h}, \mathbf{W}_{x h}^{(b)} \in \mathbb{R}^{d \times h}, \mathbf{W}_{h h}^{(b)} \in \mathbb{R}^{h \times h} Wxh(f)Rd×h,Whh(f)Rh×h,Wxh(b)Rd×h,Whh(b)Rh×h 和偏置 b h ( f ) ∈ R 1 × h , b h ( b ) ∈ R 1 × h \mathbf{b}_{h}^{(f)} \in \mathbb{R}^{1 \times h}, \mathbf{b}_{h}^{(b)} \in \mathbb{R}^{1 \times h} bh(f)R1×h,bh(b)R1×h都是模型参数。
接下来,将前向隐状态 H t → \overrightarrow{\mathbf{H_t}} Ht 和反向隐状态 H t ← \overleftarrow{\mathbf{H_t}} Ht 连接起来,获得需要送入输出层的隐状态 H t ∈ R n × 2 h \mathbf{H_t} \in \mathbb{R}^{n \times 2h} HtRn×2h.在具有多个隐藏层的深度双向循环神经网络中,该信息作为输入传递到下一个双向层。最后,输出层计算得到的输出为 O t ∈ R n × q \mathbf{O_t} \in \mathbb{R}^{n \times q} OtRn×q (q是输出单元的数目):
O t = H t W h q + b q \mathbf{O_t} = \mathbf{H_t}\mathbf{W_{hq}} + \mathbf{b_q} Ot=HtWhq+bq

4.2.2 模型的计算代价及其应用

双向循环神经网络的一个关键特性是:使用来自序列两端的信息来估计输出。也就是使用来自过去和未来的观测信息来预测当前的观测。但是在对下一个词元进行预测的情况中,这样的模型并不是我们所需要的,因为在预测下一个词元时,我们终究无法知道下一个词元的下文是什么,所以将不会得到很好的精度。具体地说,在训练期间,我们能够利用过去和未来的数据来估计现在空缺的词; 而在测试期间,我们只有过去的数据,因此精度将会很差。
另一个严重问题是,双向循环神经网络的计算速度非常慢。其主要原因是网络的前向传播需要在双向层中进行前向和后向递归, 并且网络的反向传播还依赖于前向传播的结果。 因此,梯度求解将有一个非常长的链。
双向层的使用在实践中非常少,并且仅仅应用于部分场合。 例如,填充缺失的单词、词元注释(例如,用于命名实体识别) 以及作为序列处理流水线中的一个步骤对序列进行编码(例如,用于机器翻译)。

4.3 双向循环神经网络的应用

由于双向循环神经网络使用了过去的和未来的数据, 所以我们不能盲目地将这一语言模型应用于任何预测任务。 尽管模型产出的困惑度是合理的, 该模型预测未来词元的能力却可能存在严重缺陷。 我们用下面的示例代码引以为戒,以防在错误的环境中使用它们。

#读取数据集
import math
import torch
from torch import nn
from torch.nn import functional as F
import collections
import re
import os
import hashlib
import requests
import matplotlib.pyplot as plt
import time
from IPython import display
import numpy as np
import random

#读取数据集
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'

DATA_HUB['time_machine'] = (DATA_URL + 'timemachine.txt','090b5e7e70c295757f55df93cb0a180b9691891a')

#下载数据集
def download(name, cache_dir=os.path.join('..','data')):
    assert name in DATA_HUB, f'{name} 不存在 {DATA_HUB}'
    url, sha1_hash = DATA_HUB[name]
    os.makedirs(cache_dir, exist_ok=True)
    fname = os.path.join(cache_dir, url.split('/')[-1])
    if os.path.exists(fname):
        sha1 = hashlib.sha1()
        with open(fname, 'rb') as f:
            while True:
                data = f.read(1048576)
                if not data:
                    break
                sha1.update(data)
        if sha1.hexdigest() == sha1_hash:
            return fname
    print(f'正在从{url}下载{fname}...')
    r = requests.get(url, stream=True, verify=True)
    with open(fname, 'wb') as f:
        f.write(r.content)
    return fname

def read_time_machine():
    """将时间机器数据集加载到文本行的列表中"""
    with open(download('time_machine'), 'r') as f:
        lines = f.readlines()
    return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines]

lines = read_time_machine()

#词元化
def tokenize(lines, token='word'):
    """将文本行拆分为单词或字符词元"""
    if token == 'word':
        return [line.split() for line in lines]
    elif token == 'char':
        return [list(line) for line in lines]
    else:
        print('错误:未知词元类型:' + token)

tokens = tokenize(lines)

#搭建词表
class Vocab:
    """文本词表"""
    def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):
        if tokens is None:
            tokens = []
        if reserved_tokens is None:
            reserved_tokens = []
        #按出现频率排序
        counter = count_corpus(tokens)
        self._token_freqs = sorted(counter.items(), key=lambda x: x[1], reverse=True)
        #未知词元的索引维0
        self.idx_to_token = ['<unk>'] + reserved_tokens
        self.token_to_idx = {token: idx
                             for idx, token in enumerate(self.idx_to_token)}
        for token, freq in self._token_freqs:
            if freq < min_freq:
                break
            if token not in self.token_to_idx:
                self.idx_to_token.append(token)
                self.token_to_idx[token] = len(self.idx_to_token) - 1

    def __len__(self):
        return len(self.idx_to_token)
    
    def __getitem__(self, tokens):
        if not isinstance(tokens, (list, tuple)):
            return self.token_to_idx.get(tokens, self.unk)
        return [self.__getitem__(token) for token in tokens]

    def to_tokens(self, indices):
        if not isinstance(indices, (list, tuple)):
            return self.idx_to_token[indices]
        return [self.idx_to_token[index] for index in indices]
    
    @property
    def unk(self):#未知词元的索引为0
        return 0
    
    @property
    def token_freqs(self):
        return self._token_freqs
    
def count_corpus(tokens):
    """统计词元的频率"""
    #这里的tokens是1D列表或2D列表
    if len(tokens) == 0 or isinstance(tokens[0], list):
        #将词元列表展平成一个列表
        tokens = [token for line in tokens for token in line]
    return collections.Counter(tokens)

vocab = Vocab(tokens)

def load_corpus_time_machine(max_tokens=-1):
    """返回时光机器数据集的词元索引列表和词表"""
    lines = read_time_machine()
    tokens = tokenize(lines, 'char')
    vocab = Vocab(tokens)
    # 因为时光机器数据集中的每个文本行不一定是一个句子或一个段落,所以将所有文本行展平到一个列表中
    corpus = [vocab[token] for line in tokens for token in line]
    if max_tokens > 0:
        corpus = corpus[: max_tokens]
    return corpus, vocab

corpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab)

def seq_data_iter_random(corpus, batch_size, num_steps):
    """使用随机抽样生成一个小批量子序列"""
    # 从随机偏移量开始对序列进行分区,随机范围包括num_steps-1
    corpus = corpus[random.randint(0, num_steps - 1):]
    # 减去1,是因为我们需要考虑标签
    num_subseqs = (len(corpus) - 1) // num_steps
    # 长度为num_steps的子序列的起始索引
    initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
    # 在随机抽样的迭代过程中,来自两个相邻的、随机的、小批量中的子序列不一定在原始序列上相邻
    random.shuffle(initial_indices)

    def data(pos):
        # 返回从pos位置开始的长度为num_steps的序列
        return corpus[pos: pos + num_steps]

    num_batches = num_subseqs // batch_size
    for i in range(0, batch_size * num_batches, batch_size):
        # 在这里,initial_indices包含子序列的随机起始索引
        initial_indices_per_batch = initial_indices[i: i + batch_size]
        X = [data(j) for j in initial_indices_per_batch]
        Y = [data(j + 1) for j in initial_indices_per_batch]
        yield torch.tensor(X), torch.tensor(Y)

def seq_data_iter_sequential(corpus, batch_size, num_steps):
    """使用顺序分区生成一个小批量子序列"""
    # 从随机偏移量开始划分序列
    offset = random.randint(0, num_steps)
    num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
    Xs = torch.tensor(corpus[offset: offset + num_tokens])
    Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])
    Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
    num_batches = Xs.shape[1] // num_steps
    for i in range(0, num_steps * num_batches, num_steps):
        X = Xs[:, i: i + num_steps]
        Y = Ys[:, i: i + num_steps]
        yield X, Y

#封装数据迭代器
class SeqDataLoader:
    """加载序列数据的迭代器"""
    def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):
        if use_random_iter:
            self.data_iter_fn = seq_data_iter_random
        else:
            self.data_iter_fn = seq_data_iter_sequential
        self.corpus, self.vocab = load_corpus_time_machine(max_tokens)
        self.batch_size, self.num_steps = batch_size, num_steps

    def __iter__(self):
        return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)

def load_data_time_machine(batch_size, num_steps,  #@save
                           use_random_iter=False, max_tokens=10000):
    """返回时光机器数据集的迭代器和词表"""
    data_iter = SeqDataLoader(
        batch_size, num_steps, use_random_iter, max_tokens)
    return data_iter, data_iter.vocab

batch_size, num_steps = 32, 35
train_iter, vocab = load_data_time_machine(batch_size, num_steps)

# 通过设置“bidirective=True”来定义双向LSTM模型
vocab_size, num_hiddens, num_layers = len(vocab), 256, 2
num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens, num_layers, bidirectional=True)

def try_gpu(i=0):
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

device = try_gpu()

#RNNModel
class RNNModel(nn.Module):
    """循环神经网络模型"""
    def __init__(self, rnn_layer, vocab_size, **kwargs):
        super(RNNModel, self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)

    def forward(self, inputs, state):
        X = F.one_hot(inputs.T.long(), self.vocab_size)
        X = X.to(torch.float32)
        Y, state = self.rnn(X, state)
        # 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
        # 它的输出形状是(时间步数*批量大小,词表大小)。
        output = self.linear(Y.reshape((-1, Y.shape[-1])))
        return output, state

    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return  torch.zeros((self.num_directions * self.rnn.num_layers,
                                 batch_size, self.num_hiddens),
                                device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers,
                batch_size, self.num_hiddens), device=device),
                    torch.zeros((
                        self.num_directions * self.rnn.num_layers,
                        batch_size, self.num_hiddens), device=device))

model = RNNModel(lstm_layer, len(vocab))
model = model.to(device)

class Animator:
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None, ylim=None, xscale='linear', yscale='linear',
                fmts=('-', 'm--', 'g-', 'r:'), nrows=1, ncols=1, figsize=(3.5, 2.5)):
        if legend is None:
            legend = []
            
        self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes,]

        # self.config_axes = lambda:self.set_axes(
        #     self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts
        self.set_axes(xlabel, ylabel, xlim, ylim, xscale, yscale, legend)

    def set_axes(self, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
        """设置轴"""
        for ax in self.axes:
            ax.set_xlabel(xlabel)
            ax.set_ylabel(ylabel)
            ax.set_xscale(xscale)
            ax.set_yscale(yscale)
            ax.set_xlim(xlim)
            ax.set_ylim(ylim)
            if legend:
                ax.legend(legend)
            ax.grid()
            
    def add(self, x, y):
        if not hasattr(y, '__len__'):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)

        for ax in self.axes:
            ax.cla()
            for x, y, fmt in zip(self.X, self.Y, self.fmts):
                ax.plot(x, y, fmt)
        display.display(self.fig)
        display.clear_output(wait=True)

#定义优化算法
#小批量随机梯度下降
def sgd(params, lr, batch_size):
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

#定义计时器
class Timer:
    def __init__(self):
        self.times = []
        self.start()

    def start(self):
        self.tik = time.time()

    def stop(self):
        self.times.append(time.time() - self.tik)
        return self.times[-1]
    
    def avg(self):
        return sum(self.times) / len(self.times)
    
    def sum(self):
        return sum(self.times)
    
    def cumsum(self):
        return np.array(self.times).cumsum().tolist()
    
#定义程序Accumulator
class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

#裁剪梯度
def grad_clipping(net, theta):
    """裁剪梯度"""
    if isinstance(net, nn.Module):
        params = [p for p in net.parameters() if p.requires_grad]
    else:
        params = net.params
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm

#模型训练
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
    """训练网络一个迭代周期"""
    state, timer = None, Timer()
    metric = Accumulator(2) #训练损失之和,词元数量
    for X, Y in train_iter:
        if state is None or use_random_iter:
            # 在第一次迭代或使用随机抽样时初始化state
            state = net.begin_state(batch_size=X.shape[0], device=device)
        else:
            if isinstance(net, nn.Module) and not isinstance(state, tuple):
                # state对于nn.GRU是个张量
                state.detach_()
            else:
                # state对于nn.LSTM或对于我们从零开始实现的模型是个张量
                for s in state:
                    s.detach_()
        y = Y.T.reshape(-1)
        X, y = X.to(device), y.to(device)
        y_hat, state = net(X, state)
        l = loss(y_hat, y.long()).mean()
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            grad_clipping(net, 1)
            updater.step()
        else:
            l.backward()
            grad_clipping(net, 1)
            # 因为已经调用了mean函数
            updater(batch_size=1)
        metric.add(1 * y.numel(), y.numel())
    return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()

def predict_ch8(prefix, num_preds, net, vocab, device):
    """在prefix后面生成新字符"""
    state = net.begin_state(batch_size=1, device=device) 
    outputs = [vocab[prefix[0]]] 
    get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
    for y in prefix[1:]: #预热期,用前缀数据填充模型状态
        _, state = net(get_input(), state) 
        outputs.append(vocab[y])  
    for _ in range(num_preds): #预测num_preds步
        y, state = net(get_input(), state)  
        outputs.append(int(y.argmax(dim=1).reshape(1))) 
    return ''.join([vocab.idx_to_token[i] for i in outputs])

#API实现RNN
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
              use_random_iter=False):
    """训练模型"""
    loss = nn.CrossEntropyLoss()
    animator = Animator(xlabel='epoch', ylabel='perplexity',
                            legend=['train'], xlim=[10, num_epochs])
    # 初始化
    if isinstance(net, nn.Module):
        updater = torch.optim.SGD(net.parameters(), lr)
    else:
        updater = lambda batch_size: sgd(net.params, lr, batch_size)
    predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
    # 训练和预测
    for epoch in range(num_epochs):
        ppl, speed = train_epoch_ch8(
            net, train_iter, loss, updater, device, use_random_iter)
        if (epoch + 1) % 10 == 0:
            print(predict('time traveller'))
            animator.add(epoch + 1, [ppl])
    print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
    print(predict('time traveller'))
    print(predict('traveller'))

#封装函数
class RNNModelScratch: 
    """从零开始实现的循环神经网络模型"""
    def __init__(self, vocab_size, num_hiddens, device,
                 get_params, init_state, forward_fn):
        self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
        self.params = get_params(vocab_size, num_hiddens, device)
        self.init_state, self.forward_fn = init_state, forward_fn

    def __call__(self, X, state):
        X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
        return self.forward_fn(X, state, self.params)

    def begin_state(self, batch_size, device):
        return self.init_state(batch_size, self.num_hiddens, device)

#训练与预测
num_epochs, lr = 500, 1
train_ch8(model, train_iter, vocab, lr, num_epochs, device)

最后得到:

perplexity 1.1, 131129.2 tokens/sec on cuda:0
time travellerererererererererererererererererererererererererer
travellerererererererererererererererererererererererererer

在这里插入图片描述

下面展示双向循环神经网络的正确应用,实现MNIST手写数字分类。

import torch 
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Hyper-parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.003

# MNIST dataset
train_dataset = torchvision.datasets.MNIST(
    root='../../data/',
    train=True, 
    transform=transforms.ToTensor(),
    download=True)

test_dataset = torchvision.datasets.MNIST(
    root='../../data/',
    train=False, 
    transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(
    dataset=train_dataset,
    batch_size=batch_size, 
    shuffle=True)

test_loader = torch.utils.data.DataLoader(
    dataset=test_dataset,
    batch_size=batch_size, 
    shuffle=False)

# Bidirectional recurrent neural network (many-to-one)
class BiRNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(BiRNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_size*2, num_classes)  # 2 for bidirection
    
    def forward(self, x):
        # Set initial states
        h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) # 2 for bidirection 
        c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device)
        
        # Forward propagate LSTM
        out, _ = self.lstm(x, (h0, c0))  # out: tensor of shape (batch_size, seq_length, hidden_size*2)
        
        # Decode the hidden state of the last time step
        out = self.fc(out[:, -1, :])
        return out

model = BiRNN(input_size, hidden_size, num_layers, num_classes).to(device)


# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    
# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# Test the model
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) 

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')

最终得到结果:

Epoch [1/2], Step [100/600], Loss: 0.5850
Epoch [1/2], Step [200/600], Loss: 0.1650
Epoch [1/2], Step [300/600], Loss: 0.2225
Epoch [1/2], Step [400/600], Loss: 0.1315
Epoch [1/2], Step [500/600], Loss: 0.1194
Epoch [1/2], Step [600/600], Loss: 0.0682
Epoch [2/2], Step [100/600], Loss: 0.0674
Epoch [2/2], Step [200/600], Loss: 0.0429
Epoch [2/2], Step [300/600], Loss: 0.0268
Epoch [2/2], Step [400/600], Loss: 0.1437
Epoch [2/2], Step [500/600], Loss: 0.0601
Epoch [2/2], Step [600/600], Loss: 0.1223
Test Accuracy of the model on the 10000 test images: 97.82 %

5.机器翻译与数据集

语言模型是自然语言处理的关键, 而机器翻译是语言模型最成功的基准测试。 因为机器翻译正是将输入序列转换成输出序列的 序列转换模型(sequence transduction)的核心问题。 序列转换模型在各类现代人工智能应用中发挥着至关重要的作用。
机器翻译(machine translation)指的是将序列从一种语言自动翻译成另一种语言。几十年来,在使用神经网络进行端到端学习的兴起之前, 统计学方法在这一领域一直占据主导地位。 因为统计机器翻译(statistical machine translation)涉及了翻译模型和语言模型等组成部分的统计分析, 因此基于神经网络的方法通常被称为神经机器翻译(neural machine translation), 用于将两种翻译模型区分开来。
本节介绍的是神经网络机器翻译方法,强调的是端到端的学习。 机器翻译的数据集是由源语言和目标语言的文本序列对组成的。 因此,我们需要一种完全不同的方法来预处理机器翻译数据集, 而不是复用语言模型的预处理程序。 下面,我们看一下如何将预处理后的数据加载到小批量中用于训练。

5.1 下载和预处理数据集

首先,下载一个由Tatoeba项目的双语句子对 组成的“英-法”数据集,数据集中的每一行都是制表符分隔的文本序列对, 序列对由英文文本序列和翻译后的法语文本序列组成。 请注意,每个文本序列可以是一个句子, 也可以是包含多个句子的一个段落。 在这个将英语翻译成法语的机器翻译问题中, 英语是源语言(source language), 法语是目标语言(target language)。

import os
import requests
import zipfile

DATA_URL = 'https://d2l-data.s3-accelerate.amazonaws.com/'
DATA_HUB = {'fra-eng': (DATA_URL + 'fra-eng.zip', '94646ad1522d915e7b0f9296181140edcf86a4f5')}

def download_extract(name, folder=None):
    """Download and extract a zip/tar file."""
    url, sha1_hash = DATA_HUB[name]
    fname = os.path.join(folder if folder else '.', url.split('/')[-1])
    
    if os.path.exists(fname):
        print(f"{fname} already exists")
    else:
        print(f"Downloading {fname} from {url}")
        r = requests.get(url, stream=True)
        with open(fname, 'wb') as f:
            f.write(r.content)
        print(f"{fname} downloaded")
    
    base_dir = os.path.splitext(fname)[0]
    if os.path.exists(base_dir):
        print(f"{base_dir} already exists")
    else:
        print(f"Extracting {fname}")
        with zipfile.ZipFile(fname, 'r') as zip_ref:
            zip_ref.extractall(base_dir)
        print(f"Extracted to {base_dir}")
    
    return base_dir

def find_file(root, filename):
    """Recursively find a file in the directory."""
    for dirpath, _, filenames in os.walk(root):
        if filename in filenames:
            return os.path.join(dirpath, filename)
    return None

def read_data_nmt():
    """Load the 'fra-eng' dataset."""
    data_dir = download_extract('fra-eng')
    print(f"Data directory: {data_dir}")
    print(f"Files in data directory: {os.listdir(data_dir)}")
    file_path = find_file(data_dir, 'fra.txt')
    if file_path:
        print(f"Found file at: {file_path}")
        with open(file_path, 'r', encoding='utf-8') as f:
            return f.read()
    else:
        raise FileNotFoundError(f"fra.txt not found in directory {data_dir}")

# Read and print the first 75 characters of the dataset
raw_text = read_data_nmt()
print(raw_text[:75])

输出得到:

.\fra-eng.zip already exists
.\fra-eng already exists
Data directory: .\fra-eng
Files in data directory: ['fra-eng']
Found file at: .\fra-eng\fra-eng\fra.txt
Go.	Va !
Hi.	Salut !
Run!	Cours !
Run!	Courez !
Who?	Qui ?
Wow!	Ça alors !

下载数据及后,原始文本数据需要经过几个预处理步骤。 例如,我们用空格代替不间断空格(non-breaking space), 使用小写字母替换大写字母,并在单词和标点符号之间插入空格。

#预处理
def preprocess_nmt(text):
    """预处理“英语-法语”数据集"""
    def no_space(char, prev_char):
        return char in set(',.!?') and prev_char != ' '
    
    # 使用空格替换不间断空格
    # 使用小写字母替换大写字母
    text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()
    # 在单词和标点符号之间插入空格
    out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else char
           for i, char in enumerate(text)]
    return ''.join(out)

text = preprocess_nmt(raw_text)
print(text[:80])

输出得到:

go .	va !
hi .	salut !
run !	cours !
run !	courez !
who ?	qui ?
wow !	ça alors !

5.2 词元化

在机器翻译中,我们更喜欢单词级词元化 (最先进的模型可能使用更高级的词元化技术)。 下面的tokenize_nmt函数对前num_examples个文本序列对进行词元, 其中每个词元要么是一个词,要么是一个标点符号。 此函数返回两个词元列表:source和target: source[i]是源语言(这里是英语)第i个文本序列的词元列表, target[i]是目标语言(这里是法语)第i个文本序列的词元列表。

#词元化
def tokenize_nmt(text, num_examples=None):
    """词元化“英语-法语”数据数据集"""
    source, target = [], []
    for i, line in enumerate(text.split('\n')):
        if num_examples and i > num_examples:
            break
        parts = line.split('\t')
        if len(parts) == 2:
            source.append(parts[0].split(' '))
            target.append(parts[1].split(' '))
    return source, target

source, target = tokenize_nmt(text)
source[:6], target[:6]

输出得到:

([['go', '.'],
  ['hi', '.'],
  ['run', '!'],
  ['run', '!'],
  ['who', '?'],
  ['wow', '!']],
 [['va', '!'],
  ['salut', '!'],
  ['cours', '!'],
  ['courez', '!'],
  ['qui', '?'],
  ['ça', 'alors', '!']])

绘制每个文本序列所包含的词元数量的直方图。 在这个简单的“英-法”数据集中,大多数文本序列的词元数量少于20个。

#绘制直方图
import matplotlib.pyplot as plt

def show_list_len_pair_hist(legend, xlabel, ylabel, xlist, ylist):
    """绘制列表长度对的直方图"""
    plt.figure(figsize=(8, 6))
    _, _, patches = plt.hist(
        [[len(l) for l in xlist], [len(l) for l in ylist]], label=legend)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    for patch in patches[1].patches:
        patch.set_hatch('/')
    plt.legend()
    plt.show()

show_list_len_pair_hist(['source', 'target'], '# tokens per sequence',
                        'count', source, target)

在这里插入图片描述

5.3 词表

由于机器翻译数据集由语言对组成, 因此我们可以分别为源语言和目标语言构建两个词表。 使用单词级词元化时,词表大小将明显大于使用字符级词元化时的词表大小。 为了缓解这一问题,这里我们将出现次数少于2次的低频率词元 视为相同的未知(“<unk>”)词元。 除此之外,我们还指定了额外的特定词元, 例如在小批量时用于将序列填充到相同长度的填充词元(“<pad>”), 以及序列的开始词元(“<bos>”)和结束词元(“<eos>”)。 这些特殊词元在自然语言处理任务中比较常用。

import collections

#搭建词表
class Vocab:
    """文本词表"""
    def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):
        if tokens is None:
            tokens = []
        if reserved_tokens is None:
            reserved_tokens = []
        #按出现频率排序
        counter = count_corpus(tokens)
        self._token_freqs = sorted(counter.items(), key=lambda x: x[1], reverse=True)
        #未知词元的索引维0
        self.idx_to_token = ['<unk>'] + reserved_tokens
        self.token_to_idx = {token: idx
                             for idx, token in enumerate(self.idx_to_token)}
        for token, freq in self._token_freqs:
            if freq < min_freq:
                break
            if token not in self.token_to_idx:
                self.idx_to_token.append(token)
                self.token_to_idx[token] = len(self.idx_to_token) - 1

    def __len__(self):
        return len(self.idx_to_token)
    
    def __getitem__(self, tokens):
        if not isinstance(tokens, (list, tuple)):
            return self.token_to_idx.get(tokens, self.unk)
        return [self.__getitem__(token) for token in tokens]

    def to_tokens(self, indices):
        if not isinstance(indices, (list, tuple)):
            return self.idx_to_token[indices]
        return [self.idx_to_token[index] for index in indices]
    
    @property
    def unk(self):#未知词元的索引为0
        return 0
    
    @property
    def token_freqs(self):
        return self._token_freqs
    
def count_corpus(tokens):
    """统计词元的频率"""
    #这里的tokens是1D列表或2D列表
    if len(tokens) == 0 or isinstance(tokens[0], list):
        #将词元列表展平成一个列表
        tokens = [token for line in tokens for token in line]
    return collections.Counter(tokens)

src_vocab = Vocab(source, min_freq=2,
                      reserved_tokens=['<pad>', '<bos>', '<eos>'])
len(src_vocab)

输出为:10012

5.4 加载数据集

语言模型中的序列样本都有一个固定的长度, 无论这个样本是一个句子的一部分还是跨越了多个句子的一个片断。这个固定长度是由num_steps(时间步数或词元数量)参数指定的。 在机器翻译中,每个样本都是由源和目标组成的文本序列对, 其中的每个文本序列可能具有不同的长度。
为了提高计算效率,我们仍然可以通过截断(truncation)和 填充(padding)方式实现一次只处理一个小批量的文本序列。 假设同一个小批量中的每个序列都应该具有相同的长度num_steps,那么如果文本序列的词元数目少于num_steps时,我们将继续在其末尾添加特定的“<pad>”词元, 直到其长度达到num_steps;反之,我们将截断文本序列时,只取其前num_steps 个词元,并且丢弃剩余的词元。这样,每个文本序列将具有相同的长度,以便以相同形状的小批量进行加载。
如前所述,下面的truncate_pad函数将截断或填充文本序列。

#截断或填充文本序列
def truncate_pad(line, num_steps, padding_token):
    """截断或填充文本序列"""
    if len(line) > num_steps:
        return line[:num_steps] #截断
    return line + [padding_token] * (num_steps - len(line)) #填充

truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])

得到输出:

[47, 4, 1, 1, 1, 1, 1, 1, 1, 1]

现在我们定义一个函数,可以将文本序列转换成小批量数据集用于训练。我们将特定的“<eos>”词元添加到所有序列的末尾,用于表示序列的结束。当模型通过一个词元接一个词元地生成序列进行预测时,生成的“<eos>”词元说明完成了序列输出工作。此外,我们还记录了每个文本序列的长度,统计长度时排除了填充词元,在稍后将要介绍的一些模型会需要这个长度信息。

import torch

#转换文本序列函数
def build_array_nmt(lines, vocab, num_steps):
    """将机器翻译的文本序列转换成小批量"""
    lines = [vocab[l] for l in lines]
    lines = [l + [vocab['<eos>']] for l in lines]
    array = torch.tensor([truncate_pad(
        l, num_steps, vocab['<pad>']) for l in lines])
    valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)
    return array, valid_len

5.5 训练模型

最后,我们定义load_data_nmt函数来返回数据迭代器, 以及源语言和目标语言的两种词表。

from torch.utils import data

def load_array(data_arrays, batch_size, is_train=True):
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

#训练模型
def load_data_nmt(batch_size, num_steps, num_examples=600):
    """返回翻译数据集的迭代器和词表"""
    text = preprocess_nmt(read_data_nmt())
    source, target = tokenize_nmt(text, num_examples)
    src_vocab = Vocab(source, min_freq=2, reserved_tokens=['<pad>', '<bos>', '<eos>'])
    tgt_vocab = Vocab(target, min_freq=2, reserved_tokens=['<pad>', '<bos>', '<eos>'])
    src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)
    tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)
    data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
    data_iter = load_array(data_arrays, batch_size)
    return data_iter, src_vocab, tgt_vocab

接下来读出“英语-法语”数据集中的第一个小批量数据。

train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
    print('X:', X.type(torch.int32))
    print('X的有效长度:', X_valid_len)
    print('Y:', Y.type(torch.int32))
    print('Y的有效长度:', Y_valid_len)
    break

输出得到:

.\fra-eng.zip already exists
.\fra-eng already exists
Data directory: .\fra-eng
Files in data directory: ['fra-eng']
Found file at: .\fra-eng\fra-eng\fra.txt
X: tensor([[ 16,  30,   4,   3,   1,   1,   1,   1],
        [ 75, 137,   4,   3,   1,   1,   1,   1]], dtype=torch.int32)
X的有效长度: tensor([4, 4])
Y: tensor([[0, 5, 3, 1, 1, 1, 1, 1],
        [0, 4, 3, 1, 1, 1, 1, 1]], dtype=torch.int32)
Y的有效长度: tensor([3, 3])

6.编码器-解码器架构

机器翻译是序列转换模型的一个核心问题,其输入和输出都是长度可变的序列。为了处理这种类型的输入和输出,我们可以设计一个包含两个主要组件的架构:第一个组件是一个编码器(encoder):它接受一个长度可变的序列作为输入, 并将其转换为具有固定形状的编码状态。 第二个组件是解码器(decoder):它将固定形状的编码状态映射到长度可变的序列。 这被称为编码器-解码器(encoder-decoder)架构,如下图所示。
在这里插入图片描述

我们以英语到法语的机器翻译为例:给定一个英文的输入序列:“They”“are”“watching”“.”。首先,这种“编码器-解码器”架构将长度可变的输入序列编码成一个“状态”,然后对该状态进行解码,一个词元接着一个词元地生成翻译后的序列作为输出: “Ils”“regordent”“.”。由于“编码器-解码器”架构是形成后续章节中不同序列转换模型的基础,因此本节将把这个架构转换为接口方便后面的代码实现。

6.1 编码器

在编码器接口中,我们只指定长度可变的序列作为编码器的输入X。 任何继承这个Encoder基类的模型将完成代码实现。

from torch import nn

class Encoder(nn.Module):
    """编码器-解码器架构的基本编码器接口"""
    def __init__(self, **kwargs):
        super(Encoder, self).__init__(**kwargs)

    def forward(self, X, *args):
        raise NotImplementedError

6.2 解码器

在下面的解码器接口中,我们新增一个init_state函数,用于将编码器的输出(enc_outputs)转换为编码后的状态。注意,此步骤可能需要额外的输入,例如:输入序列的有效长度。为了逐个地生成长度可变的词元序列,解码器在每个时间步都会将输入(例如:在前一时间步生成的词元)和编码后的状态 映射成当前时间步的输出词元。

class Decoder(nn.Module):
    """编码器-解码器架构的基本解码器接口"""
    def __init__(self, **kwargs):
        super(Decoder, self).__init__(**kwargs)

    def init_state(self, enc_outputs, *args):
        raise NotImplementedError

    def forward(self, X, state):
        raise NotImplementedError

6.3 合并编码器-解码器

总而言之,“编码器-解码器”架构包含了一个编码器和一个解码器,并且还拥有可选的额外的参数。在前向传播中,编码器的输出用于生成编码状态,这个状态又被解码器作为其输入的一部分。

class EncoderDecoder(nn.Module):
    """编码器-解码器架构的基类"""
    def __init__(self, encoder, decoder, **kwargs):
        super(EncoderDecoder, self).__init__(**kwargs)
        self.encoder = encoder
        self.decoder = decoder

    def forward(self, enc_X, dec_X, *args):
        enc_outputs = self.encoder(enc_X, *args)
        dec_state = self.decoder.init_state(enc_outputs, *args)
        return self.decoder(dec_X, dec_state)

7.序列到序列学习(seq2seq)

本节,我们将使用两个循环神经网络的编码器和解码器,并将其应用于序列到序列(sequence to sequence,seq2seq)类的学习任务。
遵循编码器-解码器架构的设计原则,循环神经网络编码器使用长度可变的序列作为输入,将其转换为固定形状的隐状态。换言之,输入序列的信息被编码到循环神经网络编码器的隐状态中。为了连续生成输出序列的词元,独立的循环神经网络解码器是基于输入序列的编码信息 和输出序列已经看见的或者生成的词元来预测下一个词元。下图演示了如何在机器翻译中使用两个循环神经网络进行序列到序列学习。
在这里插入图片描述

在上图中,特定的“<eos>”表示序列结束词元。一旦输出序列生成此词元,模型就会停止预测。在循环神经网络解码器的初始化时间步,有两个特定的设计决定:

  • 特定的“<bos>”表示序列开始词元,它是解码器的输入序列的第一个词元;
  • 使用循环神经网络编码器最终的隐状态来初始化解码器的隐状态。

7.1 编码器

从技术上讲,编码器将长度可变的输入序列转换成形状固定的上下文变量 c \mathbf{c} c,并且将输入序列的信息在该上下文变量中进行编码。如上节的图片中所示,可以使用循环神经网络来设计编码器。
考虑一个序列组成的样本(批量大小是1)。假设序列是 x 1 , … , x T x_1, \dots, x_T x1,,xT,其中 x t x_t xt是输入文本序列中的第t个词元。在时间步t,循环神经网络将词元 x t x_t xt的输入特征向量 x t \mathbf{x}_t xt h t − 1 \mathbf{h}_{t-1} ht1(即上一时间步的隐状态)转化为 h t \mathbf{h}_t ht(即当前步的隐状态)。使用一个函数f来描述循环神经网络的循环层所做的变换:
h t = f ( x t , h t − 1 ) \mathbf{h}_t = f(\mathbf{x}_t,\mathbf{h}_{t-1}) ht=f(xt,ht1)
总之,编码器通过选定的函数q,将所有时间步的隐状态转换为上下文变量:
c = q ( h 1 , … , h T ) \mathbf{c} = q(\mathbf{h}_1, \dots, \mathbf{h}_T) c=q(h1,,hT)
到目前为止,我们使用的是一个单向循环神经网络来设计编码器,其中隐状态只依赖于输入子序列,这个子序列是由输入序列的开始位置到隐状态所在的时间步的位置(包括隐状态所在的时间步)组成。我们也可以使用双向循环神经网络构造编码器,其中隐状态依赖于两个输入子序列,两个子序列是由隐状态所在的时间步的位置之前的序列和之后的序列(包括隐状态所在的时间步),因此隐状态对整个序列的信息都进行了编码。
接下来实现循环神经网络编码器。注意,我们使用了嵌入层(embedding layer) 来获得输入序列中每个词元的特征向量。嵌入层的权重是一个矩阵,其行数等于输入词表的大小(vocab_size),其列数等于特征向量的维度(embed_size)。对于任意输入词元的索引i, 嵌入层获取权重矩阵的第i行(从0开始)以返回其特征向量。另外,本文选择了一个多层门控循环单元来实现编码器。

#编码器
class Encoder(nn.Module):
    """编码器-解码器架构的基本编码器接口"""
    def __init__(self, **kwargs):
        super(Encoder, self).__init__(**kwargs)

    def forward(self, X, *args):
        raise NotImplementedError

#RNN Encoder
class Seq2SeqEncoder(Encoder):
    """用于序列到序列学习的循环神经网络编码器"""
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs):
        super(Seq2SeqEncoder, self).__init__(**kwargs)
        #嵌入层
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=dropout)

    def forward(self, X, *args):
        # 输出'X'的形状:(batch_size,num_steps,embed_size)
        X = self.embedding(X)
        # 在循环神经网络模型中,第一个轴对应于时间步
        X = X.permute(1, 0, 2)
        # 如果未提及状态,则默认为0
        output, state = self.rnn(X)
        # output的形状:(num_steps,batch_size,num_hiddens)
        # state的形状:(num_layers,batch_size,num_hiddens)
        return output, state

最后实例化上述编码器的实现:使用一个两层门控循环单元编码器,隐藏单元数为16.给定一小批量的输入序列x(批量大小为4,时间步为7)。在完成所有时间步后,最后一层的隐状态的输出是一个张量(output由编码器的循环层返回),其形状为(时间步数,批量大小,隐藏单元数)。

#编码器实现
encoder = Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
encoder.eval()
X = torch.zeros((4, 7), dtype=torch.long)
output, state = encoder(X)
output.shape

由于这里使用的是门控循环单元, 所以在最后一个时间步的多层隐状态的形状是 (隐藏层的数量,批量大小,隐藏单元的数量)。 如果使用长短期记忆网络,state中还将包含记忆单元信息。输出state的形状为:

state.shape

得到结果:

torch.Size([2, 4, 16])

7.2 解码器

编码器输出的上下文变量 c \mathbf{c} c对整个输入序列 x 1 , … , x T x_1, \dots, x_T x1,,xT进行编码。来自训练数据集的输出序列 y 1 , y 2 , … , y T ′ y_1,y_2, \dots, y_{T'} y1,y2,,yT,对于每个时间步 t ′ t' t(与输入序列或编码器的时间步t不同),解码器输出 y t ′ y_{t'} yt的概率取决于先前的输出子序列 y 1 , … , y t ′ − 1 y_1, \dots, y_{t'-1} y1,,yt1和上下文变量 c \mathbf{c} c
为了在序列上模型化这种条件概率,我们可以使用另一个循环神经网络作为解码器。在输出序列上的任意时间步 t ′ t' t,循环神经网络将来自上一时间步的输出和上下文变量作为输入,然后在当前时间步将它们和上一隐状态 s t ′ − 1 \mathbf{s}_{t'-1} st1转换为隐状态 s t ′ \mathbf{s}_{t'} st。因此,可以使用函数g来表示解码器的隐藏层的变换:
s t ′ = g ( y t ′ − 1 , c , s t ′ − 1 ) \mathbf{s}_{t'}=g(y_{t'-1},\mathbf{c},\mathbf{s}_{t'-1}) st=g(yt1,c,st1)
在获得解码器的隐状态之后,我们可以使用输出层和softmax操作来计算在时间步 t ′ t' t时输出 y t ′ y_{t'} yt的条件概率分布。
当实现解码器时, 我们直接使用编码器最后一个时间步的隐状态来初始化解码器的隐状态。 这就要求使用循环神经网络实现的编码器和解码器具有相同数量的层和隐藏单元。 为了进一步包含经过编码的输入序列的信息, 上下文变量在所有的时间步与解码器的输入进行拼接(concatenate)。 为了预测输出词元的概率分布, 在循环神经网络解码器的最后一层使用全连接层来变换隐状态。

#解码器
class Decoder(nn.Module):
    """编码器-解码器架构的基本解码器接口"""
    def __init__(self, **kwargs):
        super(Decoder, self).__init__(**kwargs)

    def init_state(self, enc_outputs, *args):
        raise NotImplementedError

    def forward(self, X, state):
        raise NotImplementedError

#解码器
class Seq2SeqDecoder(Decoder):
    """用于序列到序列学习的循环神经网络解码器"""
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 dropout=0, **kwargs):
        super(Seq2SeqDecoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers,
                          dropout=dropout)
        self.dense = nn.Linear(num_hiddens, vocab_size)

    def init_state(self, enc_outputs, *args):
        return enc_outputs[1]

    def forward(self, X, state):
        # 输出'X'的形状:(batch_size,num_steps,embed_size)
        X = self.embedding(X).permute(1, 0, 2)
        # 广播context,使其具有与X相同的num_steps
        context = state[-1].repeat(X.shape[0], 1, 1)
        X_and_context = torch.cat((X, context), 2)
        output, state = self.rnn(X_and_context, state)
        output = self.dense(output).permute(1, 0, 2)
        # output的形状:(batch_size,num_steps,vocab_size)
        # state的形状:(num_layers,batch_size,num_hiddens)
        return output, state

我们用与前面提到的编码器中相同的超参数来实例化解码器。 如我们所见,解码器的输出形状变为(批量大小,时间步数,词表大小), 其中张量的最后一个维度存储预测的词元分布。

decoder = Seq2SeqDecoder(vocab_size=10, embed_size=8, num_hiddens=16,
                         num_layers=2)
decoder.eval()
state = decoder.init_state(encoder(X))
output, state = decoder(X, state)
output.shape, state.shape

输出得到:

(torch.Size([4, 7, 10]), torch.Size([2, 4, 16]))

上述循环神经网络“编码器-解码器”模型中的各层如下图所示。
在这里插入图片描述

7.3 损失函数

在每个时间步,解码器预测了输出词元的概率分布。 类似于语言模型,可以使用softmax来获得分布, 并通过计算交叉熵损失函数来进行优化。在机器翻译中, 特定的填充词元被添加到序列的末尾, 因此不同长度的序列可以以相同形状的小批量加载。 但是,我们应该将填充词元的预测排除在损失函数的计算之外。
为此,我们可以使用下面的sequence_mask函数 通过零值化屏蔽不相关的项, 以便后面任何不相关预测的计算都是与零的乘积,结果都等于零。 例如,如果两个序列的有效长度(不包括填充词元)分别为1和2, 则第一个序列的第一项和第二个序列的前两项之后的剩余项将被清除为零。

#零值化
def sequence_mask(X, valid_len, value=0):
    """在序列中屏蔽不相关的项"""
    maxlen = X.size(1)
    mask = torch.arange((maxlen), dtype=torch.float32,
                        device=X.device)[None, :] < valid_len[:, None]
    X[~mask] = value
    return X

X = torch.tensor([[1, 2, 3], [4, 5, 6]])
sequence_mask(X, torch.tensor([1, 2]))

输出得到:

tensor([[1, 0, 0],
        [4, 5, 0]])

现在,我们可以通过扩展softmax交叉熵损失函数来遮蔽不相关的预测。 最初,所有预测词元的掩码都设置为1。 一旦给定了有效长度,与填充词元对应的掩码将被设置为0。 最后,将所有词元的损失乘以掩码,以过滤掉损失中填充词元产生的不相关预测。

class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
    """带遮蔽的softmax交叉熵损失函数"""
    # pred的形状:(batch_size,num_steps,vocab_size)
    # label的形状:(batch_size,num_steps)
    # valid_len的形状:(batch_size,)
    def forward(self, pred, label, valid_len):
        weights = torch.ones_like(label)
        weights = sequence_mask(weights, valid_len)
        self.reduction='none'
        unweighted_loss = super(MaskedSoftmaxCELoss, self).forward(
            pred.permute(0, 2, 1), label)
        weighted_loss = (unweighted_loss * weights).mean(dim=1)
        return weighted_loss

我们可以创建三个相同的序列来进行代码健全性检查, 然后分别指定这些序列的有效长度为4、2和0. 结果就是,第一个序列的损失应为第二个序列的两倍,而第三个序列的损失应为零。

loss = MaskedSoftmaxCELoss()
loss(torch.ones(3, 4, 10), torch.ones((3, 4), dtype=torch.long),
     torch.tensor([4, 2, 0]))

输出为:

tensor([2.3026, 1.1513, 0.0000])

7.4 训练

在下面的循环训练过程中,特定的序列开始词元(“<bos>”)和原始的输出序列(不包括序列结束词元“<eos>”)拼接在一起作为解码器的输入。这被称为强制教学(teacher forcing),因为原始的输出序列(词元的标签)被送入解码器。或者,将来自上一个时间步的预测得到的词元作为解码器的当前输入。

import numpy as np
import matplotlib.pyplot as plt
import time
from IPython import display

class Animator:
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None, ylim=None, xscale='linear', yscale='linear',
                fmts=('-', 'm--', 'g-', 'r:'), nrows=1, ncols=1, figsize=(3.5, 2.5)):
        if legend is None:
            legend = []
            
        self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes,]

        # self.config_axes = lambda:self.set_axes(
        #     self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts
        self.set_axes(xlabel, ylabel, xlim, ylim, xscale, yscale, legend)

    def set_axes(self, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
        """设置轴"""
        for ax in self.axes:
            ax.set_xlabel(xlabel)
            ax.set_ylabel(ylabel)
            ax.set_xscale(xscale)
            ax.set_yscale(yscale)
            ax.set_xlim(xlim)
            ax.set_ylim(ylim)
            if legend:
                ax.legend(legend)
            ax.grid()
            
    def add(self, x, y):
        if not hasattr(y, '__len__'):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)

        for ax in self.axes:
            ax.cla()
            for x, y, fmt in zip(self.X, self.Y, self.fmts):
                ax.plot(x, y, fmt)
        display.display(self.fig)
        display.clear_output(wait=True)

#定义计时器
class Timer:
    def __init__(self):
        self.times = []
        self.start()

    def start(self):
        self.tik = time.time()

    def stop(self):
        self.times.append(time.time() - self.tik)
        return self.times[-1]
    
    def avg(self):
        return sum(self.times) / len(self.times)
    
    def sum(self):
        return sum(self.times)
    
    def cumsum(self):
        return np.array(self.times).cumsum().tolist()
    
#定义程序Accumulator
class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

#裁剪梯度
def grad_clipping(net, theta):
    """裁剪梯度"""
    if isinstance(net, nn.Module):
        params = [p for p in net.parameters() if p.requires_grad]
    else:
        params = net.params
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm

#模型训练
def train_seq2seq(net, data_iter, lr, num_epochs, tgt_vocab, device):
    """训练序列到序列模型"""
    def xavier_init_weights(m):
        if type(m) == nn.Linear:
            nn.init.xavier_uniform_(m.weight)
        if type(m) == nn.GRU:
            for param in m._flat_weights_names:
                if 'weight' in param:
                    nn.init.xavier_uniform_(m._parameters[param])

    net.apply(xavier_init_weights)
    net.to(device)
    optimizer = torch.optim.Adam(net.parameters(), lr=lr)
    loss = MaskedSoftmaxCELoss()
    net.train()
    animator = Animator(xlabel='epoch', ylabel='loss', xlim=[10, num_epochs])
    for epoch in range(num_epochs):
        timer = Timer()
        metric = Accumulator(2)
        for batch in data_iter:
            optimizer.zero_grad()
            X, X_valid_len, Y, Y_valid_len = [x.to(device) for x in batch]
            bos = torch.tensor([tgt_vocab['<bos>']] * Y.shape[0], device=device).reshape(-1,1)
            dec_input = torch.cat([bos, Y[:, :-1]], 1) #强制教学
            Y_hat, _ = net(X, dec_input, X_valid_len)
            l = loss(Y_hat, Y, Y_valid_len)
            l.sum().backward()
            grad_clipping(net, 1)
            num_tokens = Y_valid_len.sum()
            optimizer.step()
            with torch.no_grad():
                metric.add(l.sum(), num_tokens)
        if (epoch + 1) % 10 == 0:
            animator.add(epoch + 1, (metric[0] / metric[1], ))
    print(f'loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} 'f'tokens/sec on {str(device)}')
    

现在,在机器翻译数据集上,我们可以创建和训练一个循环神经网络“编码器-解码器”模型用于序列到序列的学习。

def try_gpu(i=0):
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')


from torch.utils import data
import os
import requests
import zipfile

DATA_URL = 'https://d2l-data.s3-accelerate.amazonaws.com/'
DATA_HUB = {'fra-eng': (DATA_URL + 'fra-eng.zip', '94646ad1522d915e7b0f9296181140edcf86a4f5')}

def download_extract(name, folder=None):
    """Download and extract a zip/tar file."""
    url, sha1_hash = DATA_HUB[name]
    fname = os.path.join(folder if folder else '.', url.split('/')[-1])
    
    if os.path.exists(fname):
        print(f"{fname} already exists")
    else:
        print(f"Downloading {fname} from {url}")
        r = requests.get(url, stream=True)
        with open(fname, 'wb') as f:
            f.write(r.content)
        print(f"{fname} downloaded")
    
    base_dir = os.path.splitext(fname)[0]
    if os.path.exists(base_dir):
        print(f"{base_dir} already exists")
    else:
        print(f"Extracting {fname}")
        with zipfile.ZipFile(fname, 'r') as zip_ref:
            zip_ref.extractall(base_dir)
        print(f"Extracted to {base_dir}")
    
    return base_dir

def find_file(root, filename):
    """Recursively find a file in the directory."""
    for dirpath, _, filenames in os.walk(root):
        if filename in filenames:
            return os.path.join(dirpath, filename)
    return None

def read_data_nmt():
    """Load the 'fra-eng' dataset."""
    data_dir = download_extract('fra-eng')
    print(f"Data directory: {data_dir}")
    print(f"Files in data directory: {os.listdir(data_dir)}")
    file_path = find_file(data_dir, 'fra.txt')
    if file_path:
        print(f"Found file at: {file_path}")
        with open(file_path, 'r', encoding='utf-8') as f:
            return f.read()
    else:
        raise FileNotFoundError(f"fra.txt not found in directory {data_dir}")
    
def preprocess_nmt(text):
    """预处理“英语-法语”数据集"""
    def no_space(char, prev_char):
        return char in set(',.!?') and prev_char != ' '
    
    # 使用空格替换不间断空格
    # 使用小写字母替换大写字母
    text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()
    # 在单词和标点符号之间插入空格
    out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else char
           for i, char in enumerate(text)]
    return ''.join(out)

def tokenize_nmt(text, num_examples=None):
    """词元化“英语-法语”数据数据集"""
    source, target = [], []
    for i, line in enumerate(text.split('\n')):
        if num_examples and i > num_examples:
            break
        parts = line.split('\t')
        if len(parts) == 2:
            source.append(parts[0].split(' '))
            target.append(parts[1].split(' '))
    return source, target

raw_text = read_data_nmt()
text = preprocess_nmt(raw_text)

#搭建词表
class Vocab:
    """文本词表"""
    def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):
        if tokens is None:
            tokens = []
        if reserved_tokens is None:
            reserved_tokens = []
        #按出现频率排序
        counter = count_corpus(tokens)
        self._token_freqs = sorted(counter.items(), key=lambda x: x[1], reverse=True)
        #未知词元的索引维0
        self.idx_to_token = ['<unk>'] + reserved_tokens
        self.token_to_idx = {token: idx
                             for idx, token in enumerate(self.idx_to_token)}
        for token, freq in self._token_freqs:
            if freq < min_freq:
                break
            if token not in self.token_to_idx:
                self.idx_to_token.append(token)
                self.token_to_idx[token] = len(self.idx_to_token) - 1

    def __len__(self):
        return len(self.idx_to_token)
    
    def __getitem__(self, tokens):
        if not isinstance(tokens, (list, tuple)):
            return self.token_to_idx.get(tokens, self.unk)
        return [self.__getitem__(token) for token in tokens]

    def to_tokens(self, indices):
        if not isinstance(indices, (list, tuple)):
            return self.idx_to_token[indices]
        return [self.idx_to_token[index] for index in indices]
    
    @property
    def unk(self):#未知词元的索引为0
        return 0
    
    @property
    def token_freqs(self):
        return self._token_freqs
    
source, target = tokenize_nmt(text)

def count_corpus(tokens):
    """统计词元的频率"""
    #这里的tokens是1D列表或2D列表
    if len(tokens) == 0 or isinstance(tokens[0], list):
        #将词元列表展平成一个列表
        tokens = [token for line in tokens for token in line]
    return collections.Counter(tokens)

src_vocab = Vocab(source, min_freq=2,
                      reserved_tokens=['<pad>', '<bos>', '<eos>'])

#截断或填充文本序列
def truncate_pad(line, num_steps, padding_token):
    """截断或填充文本序列"""
    if len(line) > num_steps:
        return line[:num_steps] #截断
    return line + [padding_token] * (num_steps - len(line)) #填充

truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])

#转换文本序列函数
def build_array_nmt(lines, vocab, num_steps):
    """将机器翻译的文本序列转换成小批量"""
    lines = [vocab[l] for l in lines]
    lines = [l + [vocab['<eos>']] for l in lines]
    array = torch.tensor([truncate_pad(
        l, num_steps, vocab['<pad>']) for l in lines])
    valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)
    return array, valid_len
    
def load_array(data_arrays, batch_size, is_train=True):
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

def load_data_nmt(batch_size, num_steps, num_examples=600):
    """返回翻译数据集的迭代器和词表"""
    text = preprocess_nmt(read_data_nmt())
    source, target = tokenize_nmt(text, num_examples)
    src_vocab = Vocab(source, min_freq=2, reserved_tokens=['<pad>', '<bos>', '<eos>'])
    tgt_vocab = Vocab(target, min_freq=2, reserved_tokens=['<pad>', '<bos>', '<eos>'])
    src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)
    tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)
    data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
    data_iter = load_array(data_arrays, batch_size)
    return data_iter, src_vocab, tgt_vocab

class EncoderDecoder(nn.Module):
    """编码器-解码器架构的基类"""
    def __init__(self, encoder, decoder, **kwargs):
        super(EncoderDecoder, self).__init__(**kwargs)
        self.encoder = encoder
        self.decoder = decoder

    def forward(self, enc_X, dec_X, *args):
        enc_outputs = self.encoder(enc_X, *args)
        dec_state = self.decoder.init_state(enc_outputs, *args)
        return self.decoder(dec_X, dec_state)

embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 300, try_gpu()

train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size, num_steps)
encoder = Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers,
                        dropout)
decoder = Seq2SeqDecoder(len(tgt_vocab), embed_size, num_hiddens, num_layers,
                        dropout)
net = EncoderDecoder(encoder, decoder)
train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)

输出得到:

loss 0.019, 8339.9 tokens/sec on cuda:0

在这里插入图片描述

7.5 预测

为了采用一个接着一个词元的方式预测输出序列, 每个解码器当前时间步的输入都将来自于前一时间步的预测词元。与训练类似,序列开始词元(“<bos>”) 在初始时间步被输入到解码器中。 该预测过程如下图所示, 当输出序列的预测遇到序列结束词元(“<eos>”)时,预测就结束了。
在这里插入图片描述

#预测
def predict_seq2seq(net, src_sentence, src_vocab, tgt_vocab, num_steps,
                    device, save_attention_weights=False):
    """序列到序列模型的预测"""
    # 在预测时将net设置为评估模式
    net.eval()
    src_tokens = src_vocab[src_sentence.lower().split(' ')] + [
        src_vocab['<eos>']]
    enc_valid_len = torch.tensor([len(src_tokens)], device=device)
    src_tokens = truncate_pad(src_tokens, num_steps, src_vocab['<pad>'])
    # 添加批量轴
    enc_X = torch.unsqueeze(
        torch.tensor(src_tokens, dtype=torch.long, device=device), dim=0)
    enc_outputs = net.encoder(enc_X, enc_valid_len)
    dec_state = net.decoder.init_state(enc_outputs, enc_valid_len)
    # 添加批量轴
    dec_X = torch.unsqueeze(torch.tensor(
        [tgt_vocab['<bos>']], dtype=torch.long, device=device), dim=0)
    output_seq, attention_weight_seq = [], []
    for _ in range(num_steps):
        Y, dec_state = net.decoder(dec_X, dec_state)
        # 我们使用具有预测最高可能性的词元,作为解码器在下一时间步的输入
        dec_X = Y.argmax(dim=2)
        pred = dec_X.squeeze(dim=0).type(torch.int32).item()
        # 保存注意力权重(稍后讨论)
        if save_attention_weights:
            attention_weight_seq.append(net.decoder.attention_weights)
        # 一旦序列结束词元被预测,输出序列的生成就完成了
        if pred == tgt_vocab['<eos>']:
            break
        output_seq.append(pred)
    return ' '.join(tgt_vocab.to_tokens(output_seq)), attention_weight_seq

7.6 预测序列的评估

我们可以通过与真实的标签序列进行比较来评估预测序列。虽然BLEU(bilingual evaluation understudy) 最先是用于评估机器翻译的结果, 但现在它已经被广泛用于测量许多应用的输出序列的质量。原则上说,对于预测序列中的任意n元语法(n-grams),BLEU的评估都是这个n元语法是否出现在标签序列中。BLEU定义为:
exp ⁡ ( min ⁡ ( 0 , 1 −  len  label  len ⁡ pred  ) ) ∏ n = 1 k p n 1 / 2 n \exp \left(\min \left(0,1-\frac{\text { len }_{\text {label }}}{\operatorname{len}_{\text {pred }}}\right)\right) \prod_{n=1}^{k} p_{n}^{1 / 2^{n}} exp(min(0,1lenpred  len label ))n=1kpn1/2n
其中 l e n l a b e l len_{label} lenlabel表示标签序列中的词元数, l e n p r e d len_{pred} lenpred表示预测序列中的词元数,k是用于匹配的最长的n元语法。 p n p_n pn表示n元语法的精确度,它是两个数量的比值:第一个是预测序列与标签序列中匹配的n元语法的数量, 第二个是预测序列中n元语法的数量的比率。
BLEU的代码实现如下:

#BLEU实现
def bleu(pred_seq, label_seq, k): 
    """计算BLEU"""
    pred_tokens, label_tokens = pred_seq.split(' '), label_seq.split(' ')
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    score = math.exp(min(0, 1 - len_label / len_pred))
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        for i in range(len_label - n + 1):
            label_subs[' '.join(label_tokens[i: i + n])] += 1
        for i in range(len_pred - n + 1):
            if label_subs[' '.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[' '.join(pred_tokens[i: i + n])] -= 1
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    return score

最后,利用训练好的循环神经网络“编码器-解码器”模型, 将几个英语句子翻译成法语,并计算BLEU的最终结果。

#预测
engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):
    translation, attention_weight_seq = predict_seq2seq(
        net, eng, src_vocab, tgt_vocab, num_steps, device)
    print(f'{eng} => {translation}, bleu {bleu(translation, fra, k=2):.3f}')

输出得到:

go . => va !, bleu 1.000
i lost . => j'ai l'ai bon retard ?, bleu 0.000
he's calm . => je suis tom <unk> ., bleu 0.000
i'm home . => je suis <unk> ., bleu 0.512
  • 10
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值