【高等数学】微分中值定理与导数的应用2

本文深入探讨高等数学中微分中值定理的应用,包括如何求函数在闭区间上的最大值和最小值,并通过实例详细解释步骤。此外,还讲解了曲率的概念,提供了直角坐标和参数方程下曲率的计算方法。
摘要由CSDN通过智能技术生成

本文还有第一部分,包含微分中值定理、洛必达法则、泰勒公式、函数的单调性与函数的凹凸性

函数最大值、最小值

求函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上函数最值的步骤

  1. 求出 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内的驻点及不可导点
  2. 计算 f ( x ) f(x) f(x)在上述驻点、不可导点处的函数值及端点的函数值 f ( a ) , f ( b ) f(a),f(b) f(a),f(b)
  3. 比较第二步中的函数值,其中最大的函数值即为 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上的最大值,最小的函数值即为 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上的最小值

例1:求函数 f ( x ) = ∣ x 2 − 3 x + 2 ∣ f(x)=|x^2-3x+2| f(x)=x23x+2∣ [ − 3 , 4 ] [-3,4] [3,4]上的最大值与最小值
f ( x ) = { x 2 − 3 x + 2 , x ∈ [ − 3 , 1 ] ∪ [ 2 , 4 ] − x 2 + 3 x − 2 , x ∈ ( 1 , 2 ) f(x)=\begin{cases}x^2-3x+2,x\in[-3,1]\cup[2,4]\\-x^2+3x-2,x\in(1,2)\end{cases} f(x)={x23x+2,x[3,1][2,4]x2+3x2,x(1,2)
f ′ ( x ) = { 2 x − 3 , x ∈ [ − 3 , 1 ] ∪ [ 2 , 4 ] − 2 x + 3 , x ∈ ( 1 , 2 ) f'(x)=\begin{cases}2x-3,x\in[-3,1]\cup[2,4]\\-2x+3,x\in(1,2)\end{cases} f(x)={2x3,x[3,1][2,4]2x+3,x(1,2)
f ′ ( x ) = 0 f'(x)=0 f(x)=0,得 x = 3 2 x=\frac32 x=23(这个 3 2 \frac32 23 x ∈ ( 1 , 2 ) x\in(1,2) x(1,2)的,不是 x ∈ [ − 3 , 1 ] ∪ [ 2 , 4 ] x\in[-3,1]\cup[2,4] x[3,1][2,4],因为 3 2 \frac32 23不在区间内)
不可导点 x = 1 , x = 2 x=1,x=2 x=1,x=2(即无定义的点(分母为 0 0 0)、分段函数分段点)
f ( − 3 ) = 20 , f ( 4 ) = 6 , f ( 3 2 ) = 1 4 , f ( 1 ) = 0 , f ( 0 ) = 0 f(-3)=20,f(4)=6,f(\frac32)=\frac14,f(1)=0,f(0)=0 f(3)=20,f(4)=6,f(23)=41,f(1)=0,f(0)=0
f ( x ) f(x) f(x)的最大值为 20 20 20,最小值为 0 0 0
例2:当 e < a < b < e 2 e<a<b<e^2 e<a<b<e2时,证明 ln ⁡ 2 b − ln ⁡ 2 a > 4 e 2 ( b − a ) \ln^2b-\ln^2a>\frac4{e^2}(b-a) ln2bln2a>e24(ba)成立
法1
即证 ln ⁡ 2 b − ln ⁡ 2 a − 4 e 2 ( b − a ) > 0 \ln^2b-\ln^2a-\frac4{e^2}(b-a)>0 ln2bln2ae24(ba)>0
f ( x ) = ln ⁡ 2 x − ln ⁡ 2 a − 4 e 2 ( x − a ) ( e 2 > x > a > e ) f(x)=\ln^2x-\ln^2a-\frac4{e^2}(x-a)\quad(e^2>x>a>e) f(x)=ln2xln2ae24(xa)(e2>x>a>e)
f ′ ( x ) = 2 e 2 ln ⁡ x − 4 x e 2 ⋅ x f'(x)=\frac{2e^2\ln x-4x}{e^2\cdot x} f(x)=e2x2e2lnx4x
g ( x ) = 2 e 2 ln ⁡ x − 4 x g(x)=2e^2\ln x-4x g(x)=2e2lnx4x
g ′ ( x ) = 2 e 2 − 4 x x g'(x)=\frac{2e^2-4x}{x} g(x)=x2e24x
h ( x ) = 2 e 2 − 4 x h(x)=2e^2-4x h(x)=2e24x
h ′ ( x ) = − 4 < 0 h'(x)=-4<0 h(x)=4<0
h ( e ) = 2 e 2 − 4 e < 0 h(e)=2e^2-4e<0 h(e)=2e24e<0,因此 g ′ ( x ) < 0 g'(x)<0 g(x)<0
g ( e 2 ) = 0 g(e^2)=0 g(e2)=0,因此 f ′ ( x ) > 0 f'(x)>0 f(x)>0,即 f ( x ) f(x) f(x)单增
f ( b ) > 0 f(b)>0 f(b)>0,因此 f ( x ) > 0 f(x)>0 f(x)>0

法2:柯西中值定理易证,此处不再证明

曲率

曲率 K K K与曲率半径的求法

1. 曲率 K K K的求法

直角坐标

设曲线的直角坐标方程 y = f ( x ) y=f(x) y=f(x),且 f ( x ) f(x) f(x)具有二阶导数,则曲率公式为 K = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 K=\frac{|y''|}{(1+y'^2)^{\frac32}} K=(1+y′2)23y′′

参数方程

设曲线由参数方程 { x = ϕ ( t ) y = ψ ( t ) \begin{cases}x=\phi(t)\\y=\psi(t)\end{cases} {x=ϕ(t)y=ψ(t)所确定,且 ϕ ( t ) , ψ ( t ) \phi(t),\psi(t) ϕ(t),ψ(t)都具有二阶导数,则曲率公式为 K = ∣ ϕ ′ ( t ) ψ ′ ′ ( t ) − ϕ ′ ′ ( t ) ψ ′ ( t ) ∣ [ ϕ ′ 2 ( t ) + ψ ′ 2 ( t ) ] 3 2 K=\frac{\Big|\phi'(t)\psi''(t)-\phi''(t)\psi'(t)\Big|}{\Big[\phi'^2(t)+\psi'^2(t)\Big]^\frac32} K=[ϕ′2(t)+ψ′2(t)]23 ϕ(t)ψ′′(t)ϕ′′(t)ψ(t)

2. 曲率半径 R R R

曲率半径的公式: R = 1 K R=\frac1K R=K1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值