【高等数学】微分中值定理与导数的应用1

本文详细介绍了微分中值定理,包括费马引理、罗尔定理、拉格朗日中值定理和柯西中值定理的证明及其几何意义,并探讨了洛必达法则、泰勒公式、函数的单调性与极值、凹凸性等相关概念。通过例题解析,帮助理解这些定理在实际问题中的应用。
摘要由CSDN通过智能技术生成

本文还有第二部分,包含函数最大值、最小值,曲率

微分中值定理

一、费马引理

设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某邻域 U ( x 0 ) U(x_0) U(x0)内有定义,并且在 x 0 x_0 x0处可导,如果对任意的 x ∈ U ( x 0 ) x\in U(x_0) xU(x0),有
f ( x ) ≤ f ( x 0 ) ( 或 f ( x ) ≥ f ( x 0 ) ) f(x)\leq f(x_0)(或f(x)\geq f(x_0)) f(x)f(x0)(f(x)f(x0))
那么 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

证明:
x ∈ U ( x 0 ) 时, f ( x ) ≤ f ( x 0 ) x\in U(x_0)时,f(x)\leq f(x_0) xU(x0)时,f(x)f(x0),则 x 0 + Δ x ∈ U ( x 0 ) x_0+\Delta x\in U(x_0) x0+ΔxU(x0),有 f ( x 0 + Δ x ) ≤ f ( x 0 ) f(x_0+\Delta x)\leq f(x_0) f(x0+Δx)f(x0)

Δ x > 0 \Delta x>0 Δx>0
f + ′ ( x 0 ) = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x 显然 ≤ 0 f'_+(x_0)=\lim_{\Delta x\to0^+}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}显然\leq0 f+(x0)=Δx0+limΔxf(x0+Δx)f(x0)显然0
f − ′ ( x 0 ) = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x 显然 ≥ 0 f'_-(x_0)=\lim_{\Delta x\to0^-}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}显然\geq0 f(x0)=Δx0limΔxf(x0+Δx)f(x0)显然0
∵ f ( x ) \because f(x) f(x) x 0 x_0 x0处可导, ∴ f + ′ ( x 0 ) = f − ′ ( x 0 ) \therefore f'_+(x_0)=f'_-(x_0) f+(x0)=f(x0),则 f + ′ ( x 0 ) = f − ′ ( x 0 ) = 0 f'_+(x_0)=f'_-(x_0)=0 f+(x0)=f(x0)=0,证毕

二、罗尔定理

如果函数 f ( x ) f(x) f(x)满足:

  • 在闭区间 [ a , b ] [a,b] [a,b]上连续
  • 在开区间 ( a , b ) (a,b) (a,b)内可导
  • 在区间端点处的函数值相等,即 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)

那么在 ( a , b ) (a,b) (a,b)内至少有一点 ξ ( a < ξ < b ) \xi(a<\xi<b) ξ(a<ξ<b),使
f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0
证明:
∵ f ( x ) \because f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,由闭区间上最值定理得
f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上必有最大值 M M M,最小值 m m m

M = m M=m M=m时,则在 [ a , b ] [a,b] [a,b]上必有 f ( x ) = M f(x)=M f(x)=M,则对于 ∀ x ∈ ( a , b ) \forall x\in(a,b) x(a,b),有 f ′ ( x ) = 0 f'(x)=0 f(x)=0,对 ∀ ξ ∈ ( a , b ) \forall \xi\in(a,b) ξ(a,b),有 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

M > m M>m M>m时, ∵ f ( a ) = f ( b ) \because f(a)=f(b) f(a)=f(b) ∴ \therefore 至少有一个 M M M m m m ( a , b ) (a,b) (a,b)内部取得

假设 M M M ( a , b ) (a,b) (a,b)取得, ∃ ξ ∈ ( a , b ) , f ( ξ ) = M \exists \xi\in(a,b),f(\xi)=M ξ(a,b),f(ξ)=M
∴ ∀ x ∈ [ a , b ] \therefore\forall x\in[a,b] x[a,b],有 f ( x ) ≤ f ( ξ ) f(x)\leq f(\xi) f(x)f(ξ),由费马引理得, f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0,证毕

例1:若函数 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内具有二阶导数,且 f ( x 1 ) = f ( x 2 ) = f ( x 3 ) f(x_1)=f(x_2)=f(x_3) f(x1)=f(x2)=f(x3),其中 a < x 1 < x 2 < x 3 < b a<x_1<x_2<x_3<b a<x1<x2<x3<b,证明:在 ( a , b ) (a,b) (a,b)至少有一点 ξ \xi ξ,使得 f ′ ′ ( ξ ) = 0 f''(\xi)=0 f′′(ξ)=0

∵ f ( x ) \because f(x) f(x) [ x 1 , x 2 ] , [ x 2 , x 3 ] [x_1,x_2],[x_2,x_3] [x1,x2],[x2,x3]上连续,在 ( x 1 , x 2 ) , ( x 2 , x 3 ) (x_1,x_2),(x_2,x_3) (x1,x2),(x2,x3)内可导,且 f ( x 1 ) = f ( x 2 ) = f ( x 3 ) f(x_1)=f(x_2)=f(x_3) f(x1)=f(x2)=f(x3)

由罗尔定理得
∃ ξ 1 ∈ ( x 1 , x 2 ) \exists \xi_1\in(x_1,x_2) ξ1(x1,x2),使 f ′ ( ξ 1 ) = 0 f'(\xi_1)=0 f(ξ1)=0 ∃ ξ 2 ∈ ( x 2 , x 3 ) \exists \xi_2\in(x_2,x_3) ξ2(x2,x3),使 f ′ ( ξ 2 ) = 0 f'(\xi_2)=0 f(ξ2)=0

∵ f ′ ( x ) 在 [ ξ 1 , ξ 2 ] ∈ ( a , b ) \because f'(x)在[\xi_1,\xi_2]\in (a,b) f(x)[ξ1,ξ2](a,b)上连续, ( ξ 1 , ξ 2 ) (\xi_1,\xi_2) (ξ1,ξ2)内可导,得 f ′ ( ξ 1 ) = f ′ ( ξ 2 ) f'(\xi_1)=f'(\xi_2) f(ξ1)=f(ξ2)

由罗尔定理得, ∃ ξ ∈ ( ξ 1 , ξ 2 ) ⊂ ( a , b ) \exists\xi\in(\xi_1,\xi_2)\subset (a,b) ξ(ξ1,ξ2)(a,b),使 f ′ ′ ( ξ ) = 0 f''(\xi)=0 f′′(ξ)=0,证毕

三、拉格朗日中值定理

如果函数 f ( x ) f(x) f(x)满足

  • 在闭区间 [ a , b ] [a,b] [a,b]上连续
  • 在开区间 ( a , b ) (a,b) (a,b)内可导

那么在 ( a , b ) (a,b) (a,b)内至少有一点 ξ ( a < ξ < b ) \xi(a<\xi<b) ξ(a<ξ<b),使
f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)
成立

1. 证明

法1
即证 f ′ ( ξ ) − f ( b ) − f ( a ) b − a = 0 f'(\xi)-\frac{f(b)-f(a)}{b-a}=0 f(ξ)baf(b)f(a)=0

F ( x ) = f ( x ) − f ( b ) − f ( a ) b − a x F(x)=f(x)-\frac{f(b)-f(a)}{b-a}x F(x)=f(x)baf(b)f(a)x(因为 f ′ ( ξ ) − f ( b ) − f ( a ) b − a = 0 f'(\xi)-\frac{f(b)-f(a)}{b-a}=0 f(ξ)baf(b)f(a)=0的原函数)

F ( a ) = f ( a ) − f ( b ) − f ( a ) b − a a = b f ( a ) − a f ( b ) b − a F ( b ) = f ( b ) − f ( b ) − f ( a ) b − a b = b f ( a ) − a f ( b ) b − a \begin{aligned} F(a)=f(a)-\frac{f(b)-f(a)}{b-a}a=\frac{bf(a)-af(b)}{b-a}\\F(b)=f(b)-\frac{f(b)-f(a)}{b-a}b=\frac{bf(a)-af(b)}{b-a} \end{aligned} F(a)=f(a)baf(b)f(a)a=babf(a)af(b)F(b)=f(b)baf(b)f(a)b=babf(a)af(b)
∵ F ( x ) \because F(x) F(x) [ a , b ] [a,b] [a,b]上连续, ( a , b ) (a,b) (a,b)内可导。由罗尔定理得, ∃ ξ ∈ ( a , b ) \exists \xi\in(a,b) ξ(a,b)使 F ′ ( ξ ) = 0 F'(\xi)=0 F(ξ)=0,即 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba),证毕

法2
即证 f ′ ( ξ ) − f ( b ) − f ( a ) b − a = 0 f'(\xi)-\frac{f(b)-f(a)}{b-a}=0 f(ξ)baf(b)f(a)=0
F ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) b − a ( x − a ) F(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a) F(x)=f(x)f(a)baf(b)f(a)(xa)(因为 f ( x ) − f ( a ) f(x)-f(a) f(x)f(a),将 a a a点移到 x x x轴上; − f ( b ) − f ( a ) b − a ( x − a ) -\frac{f(b)-f(a)}{b-a}(x-a) baf(b)f(a)(xa) y A B y_{AB} yAB的直线 A B AB AB方程,减去 f ( x ) f(x) f(x)直线 A B AB AB方程 f ( x ) − f ( b ) − f ( a ) b − a ( x − a ) f(x)-\frac{f(b)-f(a)}{b-a}(x-a) f(x)baf(b)f(a)(xa)此时新函数 A A A B B B两点大小相同,再 − f ( a ) -f(a) f(a) A A A B B B两点大小相同为 0 0 0),则 F ( a ) = 0 , F ( b ) = 0 F(a)=0,F(b)=0 F(a)=0,F(b)=0

∵ F ( x ) \because F(x) F(x) [ a , b ] [a,b] [a,b]上连续, ( a , b ) (a,b) (a,b)内可导, F ( a ) = F ( b ) = 0 F(a)=F(b)=0 F(a)=F(b)=0,由罗尔定理得, ∃ ξ ∈ ( a , b ) \exists \xi\in(a,b) ξ(a,b)使 F ′ ( ξ ) = 0 F'(\xi)=0 F(ξ)=0,即 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba),证毕

推广:如果函数 f ( x ) f(x) f(x)在区间 I I I上连续, I I I内可导且导数恒为零,那么 f ( x ) f(x) f(x)在区间 I I I上是一个常数。如 arctan ⁡ x + arctan ⁡ 1 x = π 2 \arctan x+\arctan\frac1x=\frac\pi2 arctanx+arctanx1=2π

2. 几何意义

连续曲线 y = f ( x ) y=f(x) y=f(x)的弧 A B AB AB上除端点外,具有不垂直于 x x x轴的切线,那么这弧上至少有一点 C C C,使曲线在点 C C C处的切线平行于弦 A B AB AB</

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值