【线性代数基础进阶】行列式

一、行列式的概念

1. 二、三阶行列式

行列式的结果是数,是不同行不同列元素乘积的代数式

2. 排序、逆序、逆序数

1 , 2 , ⋯   , n 1,2,\cdots,n 1,2,,n组成的有序数组称为一个 n n n阶排列,通常用 j 1 , j 2 , ⋯   , j n j_{1},j_{2},\cdots,j_{n} j1,j2,,jn表示 n n n阶排列
例如:
2 , 4 , 1 , 3 4 阶排列 2,4,1,3\quad 4阶排列 2,4,1,34阶排列
1 , 3 , 5 , 4 , 2 5 阶排列 1,3,5,4,2\quad 5阶排列 1,3,5,4,25阶排列

一个排列中,如果一个大的数排在一个小的数的前面,就称这两个数构成一个逆序。

一个排列的逆序的总数称为这个排列的逆序数,用 τ ( j 1 , j 2 , ⋯   , j n ) \tau(j_{1},j_{2},\cdots,j_{n}) τ(j1,j2,,jn)表示排列 j 1 , j 2 , ⋯   , j n j_{1},j_{2},\cdots,j_{n} j1,j2,,jn的逆序数

如果一个排列的逆序数是偶数,则称这个排列是偶排列,否则称为奇排列
τ ( 1 , 3 , 2 ) = 0 + 1 \tau(1,3,2)=0+1 τ(1,3,2)=0+1
τ ( 2 , 4 , 3 , 1 ) = 1 + 2 + 1 = 4 \tau(2,4,3,1)=1+2+1=4 τ(2,4,3,1)=1+2+1=4
1 , 2 , 3 , ⋯   , n 自然排列 ( 偶排列 ) 1,2,3,\cdots,n\quad 自然排列(偶排列) 1,2,3,,n自然排列(偶排列)

3. n n n阶行列式概念

∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j 1 j 2 ⋯ j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n \begin{vmatrix}{ a _ { 11 } } & { a _ { 12 } } & { \cdots } & { a _ { 1 n } } \\ { a _ { 21 } } & { a _ { 22 } } & { \cdots } & { a _ { 2 n } } \\ { \vdots } & { \vdots } & { } & { \vdots } \\ { a _ { n 1 } } &{ a _ { n 2 } } & { \cdots } & { a _ { n n }}\end{vmatrix}=\sum\limits_{j_{1}j_{2}\cdots j_{n}}(-1)^{\tau(j_{1}j_{2}\cdots j_{n})}a_{1j_{1}}a_{2j_{2}}\cdots a_{nj_{n}} a11a21an1a12a22an2a1na2nann =j1j2jn(1)τ(j1j2jn)a1j1a2j2anjn
不同行不同列的 n n n个元素的乘积的代数和。当 j 1 j 2 ⋯ j n j_{1}j_{2}\cdots j_{n} j1j2jn是偶排列时该项前面带正号;当 j 1 j 2 ⋯ j n j_{1}j_{2}\cdots j_{n} j1j2jn时奇排列时,该项前面带负号

n n n阶行列式完全展开式有 n ! n! n!

二、行列式的性质

  1. 经转置行列式值不变
    行的性质和列的性质是相同的
  2. 某行有公因数 k k k可把 k k k提出
    特别的,若某行元素全为 0 0 0,则 D = 0 D=0 D=0
  3. 两行互换行列式的值变号
    特别的,两行相同 ⇒ D = 0 \Rightarrow D=0 D=0;两行成比例 ⇒ D = 0 \Rightarrow D=0 D=0
  4. 如果行列式某行每一项都是两个数的和,则可以把行列式拆成两个行列式的和
  5. 把某行的 k k k倍加到另外一行,行列式的值不变

例:证明 ∀ a , b , c , ∣ 1 1 1 a b c b + c c + a a + b ∣ = 0 \forall a,b,c ,\begin{vmatrix}1&1&1\\a&b&c\\b+c&c+a&a+b\end{vmatrix}=0 a,b,c, 1ab+c1bc+a1ca+b =0

∣ 1 1 1 a b c b + c c + a a + b ∣ = ∣ 1 1 1 a b c a + b + c a + b + c a + b + c ∣ = ( a + b + c ) ∣ 1 1 1 a b c 1 1 1 ∣ = 0 \begin{aligned} \begin{vmatrix} 1&1&1\\ a&b&c\\ b+c&c+a&a+b \end{vmatrix}&=\begin{vmatrix} 1&1&1\\ a&b&c\\ a+b+c&a+b+c&a+b+c \end{vmatrix}\\ &=(a+b+c)\begin{vmatrix} 1&1&1\\ a&b&c\\ 1&1&1 \end{vmatrix}=0 \end{aligned} 1ab+c1bc+a1ca+b = 1aa+b+c1ba+b+c1ca+b+c =(a+b+c) 1a11b11c1 =0

例:证明 ∣ b 1 + c 1 c 1 + a 1 a 1 + b 1 b 2 + c 2 c 2 + a 2 a 2 + b 2 b 3 + c 3 c 3 + a 3 a 3 + b 3 ∣ = 2 ∣ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ∣ \begin{vmatrix}b_{1}+c_{1}&c_{1}+a_{1}&a_{1}+b_{1}\\b_{2}+c_{2}&c_{2}+a_{2}&a_{2}+b_{2}\\b_{3}+c_{3}&c_{3}+a_{3}&a_{3}+b_{3}\end{vmatrix}=2\begin{vmatrix}a_{1}&b_{1}&c_{1}\\a_{2}&b_{2}&c_{2}\\a_{3}&b_{3}&c_{3}\end{vmatrix} b1+c1b2+c2b3+c3c1+a1c2+a2c3+a3a1+b1a2+b2a3+b3 =2 a1a2a3b1b2b3c1c2c3

D = 2 ∣ a 1 + b 1 + c 1 c 1 + a 1 a 1 + b 1 a 2 + b 2 + c 2 c 2 + a 2 a 2 + b 2 a 3 + b 3 + c 3 c 3 + a 3 a 3 + b 3 ∣ 该步是为了得到系数 2 = 2 ∣ a 1 + b 1 + c 1 − b 1 − c 1 a 2 + b 2 + c 2 − b 2 − c 2 a 3 + b 3 + c 3 − b 3 − c 3 ∣ 得到二三列 = 2 ∣ a 1 − b 1 − c 1 a 2 − b 2 − c 2 a 3 − b 3 − c 3 ∣ = 2 ∣ a 1 b 1 c 1 a 2 b 2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值