【高等数学基础进阶】不定积分-练习 & 定积分与反常积分-补充

本文探讨了高等数学中的不定积分,通过示例详细解析了如何求解不定积分,并介绍了定积分的几何意义,包括在不同情况下积分表示的面积。此外,还讲解了变上限积分的应用,提供了一个极限问题的解决方案。最后,简要讨论了无界函数的反常积分及其收敛性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不定积分

例:设 f ( sin ⁡ 2 x ) = x sin ⁡ x f(\sin^{2}x)= \frac{x}{\sin x} f(sin2x)=sinxx,求 ∫ x 1 − x f ( x ) d x \int \frac{\sqrt{x}}{\sqrt{1-x}}f(x)dx 1x x f(x)dx

u = sin ⁡ 2 x u=\sin^{2}x u=sin2x,则有
sin ⁡ x = u , x = arcsin ⁡ u , f ( x ) = arcsin ⁡ x x \sin x=\sqrt{u},x=\arcsin \sqrt{u},f(x)= \frac{\arcsin \sqrt{x}}{\sqrt{x}} sinx=u ,x=arcsinu ,f(x)=x arcsinx
代入得
∫ x 1 − x f ( x ) d x = ∫ arcsin ⁡ x 1 − x d x = − 2 ∫ arcsin ⁡ x d 1 − x = − 2 1 − x arcsin ⁡ x + 2 ∫ 1 − x 1 1 − x d x = − 2 1 − x arcsin ⁡ x + 2 x + C \begin{aligned} \int \frac{\sqrt{x}}{\sqrt{1-x}}f(x)dx&=\int\frac{\arcsin \sqrt{x}}{\sqrt{1-x}}dx\\ &=-2\int \arcsin \sqrt{x}d \sqrt{1-x}\\ &=-2\sqrt{1-x}\arcsin \sqrt{x}+2\int \sqrt{1-x} \frac{1}{\sqrt{1-x}}d \sqrt{x}\\ &=-2\sqrt{1-x}\arcsin \sqrt{x}+2\sqrt{x}+C \end{aligned} 1x x f(x)dx=1x arcsinx dx=2arcsinx d1x =21x arcsinx +21x 1x 1dx =21x arcsinx +2x +C

定积分的几何意义

∫ a b f ( x ) d x \int^{b}_{a}f(x)dx abf(x)dx存在

  • 若在 [ a , b ] [a,b] [a,b] f ( x ) ≥ 0 f(x)\geq0 f(x)0,则 ∫ a b f ( x ) d x \int^{b}_{a}f(x)dx abf(x)dx的值等于以曲线 y = f ( x ) , x = a , x = b y=f(x),x=a,x=b y=f(x),x=a,x=b x x x轴围成的曲边梯形的面积
  • 若在 [ a , b ] [a,b] [a,b] f ( x ) ≤ 0 f(x)\leq0 f(x)0,则 ∫ a b f ( x ) d x \int^{b}_{a}f(x)dx abf(x)dx的值等于以曲线 y = f ( x ) , x = a , x = b y=f(x),x=a,x=b y=f(x),x=a,x=b x x x轴围成的曲边梯形的面积的负值
  • 若在 [ a , b ] [a,b] [a,b] f ( x ) f(x) f(x)的值有正有负,则 ∫ a b f ( x ) d x \int^{b}_{a}f(x)dx abf(x)dx的值等于 x x x轴上方的面积减去 x x x轴下方的面积所得之差

变上限积分

例16:求极限 lim ⁡ x → 0 + ∫ 0 x x − t e t d t x 3 \begin{aligned}\lim\limits_{x\to0+}\frac{\int^{x}_{0}\sqrt{x-t}e^{t}dt}{\sqrt{x ^{3}}}\end{aligned} x0+limx3 0xxt etdt

注意该积分中值定理要求 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)连续,且 g ( x ) g(x) g(x)不变号

原式 = lim ⁡ x → 0 + e ξ ∫ 0 x x − t d t x 3 = lim ⁡ x → 0 + − 2 3 ( x − t ) 3 2 ∣ 0 x x 3 = lim ⁡ x → 0 + 2 3 x 3 2 x 3 2 = 2 3 \begin{aligned} 原式&=\lim\limits_{x\to0+}\frac{e^{\xi }\int^{x}_{0}\sqrt{x-t}dt}{\sqrt{x ^{3}}}\\ &=\lim\limits_{x\to0+}\frac{- \frac{2}{3}(x-t)^{\frac{3}{2}}\Big|^{x}_{0}}{\sqrt{x ^{3}}}\\ &=\lim\limits_{x\to0+}\frac{\frac{2}{3}x^{\frac{3}{2}}}{x^{\frac{3}{2}}}\\ &=\frac{2}{3} \end{aligned} 原式=x0+limx3 eξ0xxt dt=x0+limx3 32(xt)23 0x=x0+limx2332x23=32

不一定对 t t t积分含有 x x x就一定要把 x x x弄出来,把 x x x当做常数能积出来就不需要其他操作

无界函数的反常积分

反常积分在某区间收敛,即意味着该反常积分在积分区间的任一子区间都收敛

定积分应用没啥补充
说一下如果题目比较简单,带一般的公式就行,大部分题用公式都能算出来,不太需要二重积分,如果用公式做不出来,再考虑二重积分的方法
物理应用上注意理解元素法,会用 d x , d y dx,dy dx,dy,求出一小个元素的参数然后积分就行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值