不定积分
例:设 f ( sin 2 x ) = x sin x f(\sin^{2}x)= \frac{x}{\sin x} f(sin2x)=sinxx,求 ∫ x 1 − x f ( x ) d x \int \frac{\sqrt{x}}{\sqrt{1-x}}f(x)dx ∫1−xxf(x)dx
令
u
=
sin
2
x
u=\sin^{2}x
u=sin2x,则有
sin
x
=
u
,
x
=
arcsin
u
,
f
(
x
)
=
arcsin
x
x
\sin x=\sqrt{u},x=\arcsin \sqrt{u},f(x)= \frac{\arcsin \sqrt{x}}{\sqrt{x}}
sinx=u,x=arcsinu,f(x)=xarcsinx
代入得
∫
x
1
−
x
f
(
x
)
d
x
=
∫
arcsin
x
1
−
x
d
x
=
−
2
∫
arcsin
x
d
1
−
x
=
−
2
1
−
x
arcsin
x
+
2
∫
1
−
x
1
1
−
x
d
x
=
−
2
1
−
x
arcsin
x
+
2
x
+
C
\begin{aligned} \int \frac{\sqrt{x}}{\sqrt{1-x}}f(x)dx&=\int\frac{\arcsin \sqrt{x}}{\sqrt{1-x}}dx\\ &=-2\int \arcsin \sqrt{x}d \sqrt{1-x}\\ &=-2\sqrt{1-x}\arcsin \sqrt{x}+2\int \sqrt{1-x} \frac{1}{\sqrt{1-x}}d \sqrt{x}\\ &=-2\sqrt{1-x}\arcsin \sqrt{x}+2\sqrt{x}+C \end{aligned}
∫1−xxf(x)dx=∫1−xarcsinxdx=−2∫arcsinxd1−x=−21−xarcsinx+2∫1−x1−x1dx=−21−xarcsinx+2x+C
定积分的几何意义
设 ∫ a b f ( x ) d x \int^{b}_{a}f(x)dx ∫abf(x)dx存在
- 若在 [ a , b ] [a,b] [a,b]上 f ( x ) ≥ 0 f(x)\geq0 f(x)≥0,则 ∫ a b f ( x ) d x \int^{b}_{a}f(x)dx ∫abf(x)dx的值等于以曲线 y = f ( x ) , x = a , x = b y=f(x),x=a,x=b y=f(x),x=a,x=b及 x x x轴围成的曲边梯形的面积
- 若在 [ a , b ] [a,b] [a,b]上 f ( x ) ≤ 0 f(x)\leq0 f(x)≤0,则 ∫ a b f ( x ) d x \int^{b}_{a}f(x)dx ∫abf(x)dx的值等于以曲线 y = f ( x ) , x = a , x = b y=f(x),x=a,x=b y=f(x),x=a,x=b及 x x x轴围成的曲边梯形的面积的负值
- 若在 [ a , b ] [a,b] [a,b]上 f ( x ) f(x) f(x)的值有正有负,则 ∫ a b f ( x ) d x \int^{b}_{a}f(x)dx ∫abf(x)dx的值等于 x x x轴上方的面积减去 x x x轴下方的面积所得之差
变上限积分
例16:求极限 lim x → 0 + ∫ 0 x x − t e t d t x 3 \begin{aligned}\lim\limits_{x\to0+}\frac{\int^{x}_{0}\sqrt{x-t}e^{t}dt}{\sqrt{x ^{3}}}\end{aligned} x→0+limx3∫0xx−tetdt
注意该积分中值定理要求 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)连续,且 g ( x ) g(x) g(x)不变号
原式 = lim x → 0 + e ξ ∫ 0 x x − t d t x 3 = lim x → 0 + − 2 3 ( x − t ) 3 2 ∣ 0 x x 3 = lim x → 0 + 2 3 x 3 2 x 3 2 = 2 3 \begin{aligned} 原式&=\lim\limits_{x\to0+}\frac{e^{\xi }\int^{x}_{0}\sqrt{x-t}dt}{\sqrt{x ^{3}}}\\ &=\lim\limits_{x\to0+}\frac{- \frac{2}{3}(x-t)^{\frac{3}{2}}\Big|^{x}_{0}}{\sqrt{x ^{3}}}\\ &=\lim\limits_{x\to0+}\frac{\frac{2}{3}x^{\frac{3}{2}}}{x^{\frac{3}{2}}}\\ &=\frac{2}{3} \end{aligned} 原式=x→0+limx3eξ∫0xx−tdt=x→0+limx3−32(x−t)23∣ ∣0x=x→0+limx2332x23=32
不一定对 t t t积分含有 x x x就一定要把 x x x弄出来,把 x x x当做常数能积出来就不需要其他操作
无界函数的反常积分
反常积分在某区间收敛,即意味着该反常积分在积分区间的任一子区间都收敛
定积分应用没啥补充
说一下如果题目比较简单,带一般的公式就行,大部分题用公式都能算出来,不太需要二重积分,如果用公式做不出来,再考虑二重积分的方法
物理应用上注意理解元素法,会用 d x , d y dx,dy dx,dy,求出一小个元素的参数然后积分就行