【概率论基础进阶】参数估计-估计量求法和区间估计

矩估计法

用样本矩估计相应的总体矩,用样本矩的函数估计总体矩相应的函数,然后求出要估计的参数,称这种估计法为矩估计法

步骤

X X X为连续型随机变量,其概率密度为 f ( x ; θ 1 , θ 2 , ⋯   , θ k ) f(x;\theta_{1},\theta_{2},\cdots,\theta_{k}) f(x;θ1,θ2,,θk),或 X X X为离散型随机变量,其分布律为 P { X = x } = p ( x ; θ 1 , θ 2 , ⋯   , θ k ) P \left\{X=x\right\}=p(x;\theta_{1},\theta_{2},\cdots,\theta_{k}) P{X=x}=p(x;θ1,θ2,,θk),其中 θ 1 , θ 2 , ⋯   , θ k \theta_{1},\theta_{2},\cdots,\theta_{k} θ1,θ2,,θk为待估计参数, X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn是来自 X X X的样本。假设总体 X X X的前 k k k阶矩
μ l = E ( X l ) = ∫ − ∞ + ∞ x l f ( x ; θ 1 , θ 2 , ⋯   , θ k ) d x ( X 连续型 ) μ l = E ( X l ) = ∑ x ∈ R X x l p ( x ; θ 1 , θ 2 , ⋯   , θ k ) ( X 离散型 ) \begin{aligned} \mu_{l}=E(X^{l})&=\int_{-\infty}^{+\infty}x^{l}f(x;\theta_{1},\theta_{2},\cdots,\theta_{k})dx \quad (X连续型)\\ \mu_{l}=E(X^{l})&=\sum\limits_{x \in R_{X}}^{}x^{l}p(x;\theta_{1},\theta_{2},\cdots,\theta_{k})\quad (X离散型) \end{aligned} μl=E(Xl)μl=E(Xl)=+xlf(x;θ1,θ2,,θk)dx(X连续型)=xRXxlp(x;θ1,θ2,,θk)(X离散型)
(其中 R X R_{X} RX X X X可能取值的范围)存在。一般来说,它们是 θ 1 , θ 2 , ⋯   , θ k \theta_{1},\theta_{2},\cdots,\theta_{k} θ1,θ2,,θk的函数。基于样本矩
A l = 1 n ∑ i = 1 n X i l A_{l}=\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{l} Al=n1i=1nXil
依概率收敛于相应的总体距 μ l ( l = 1 , 2 , ⋯   , k ) \mu_{l}(l=1,2,\cdots ,k) μl(l=1,2,,k),样本矩的连续函数依概率收敛于相应的总体矩的连续函数,我们就用样本矩作为相应的总体矩的估计量,而以样本矩的连续函数作为相应的总体矩的连续函数的估计量。这种估计方法称为矩估计法。矩估计法的具体做法如下:设
{ μ 1 = μ 1 ( θ 1 , θ 2 , ⋯   , θ k ) μ 2 = μ 2 ( θ 1 , θ 2 , ⋯   , θ k ) ⋮ μ k = μ k ( θ 1 , θ 2 , ⋯   , θ k ) \left\{\begin{aligned}&\mu_{1}=\mu_{1}(\theta_{1},\theta_{2},\cdots,\theta_{k})\\ &\mu_{2}=\mu_{2}(\theta_{1},\theta_{2},\cdots,\theta_{k})\\ &\vdots \\&\mu_{k}=\mu_{k}(\theta_{1},\theta_{2},\cdots,\theta_{k})\end{aligned}\right. μ1=μ1(θ1,θ2,,θk)μ2=μ2(θ1,θ2,,θk)μk=μk(θ1,θ2,,θk)
这是一个包含 k k k个未知参数 θ 1 , θ 2 , ⋯   , θ k \theta_{1},\theta_{2},\cdots,\theta_{k} θ1,θ2,,θk的联立方程组。一般来说,可以从中解出 θ 1 , θ 2 , ⋯   , θ k \theta_{1},\theta_{2},\cdots,\theta_{k} θ1,θ2,,θk,得到
{ θ 1 = θ 1 ( μ 1 , μ 2 , ⋯   , μ k ) θ 2 = θ 2 ( μ 1 , μ 2 , ⋯   , μ k ) ⋮ θ k = θ k ( μ 1 , μ 2 , ⋯   , μ k ) \left\{\begin{aligned}&\theta_{1}=\theta_{1}(\mu_{1},\mu_{2},\cdots ,\mu_{k})\\&\theta_{2}=\theta_{2}(\mu_{1},\mu_{2},\cdots ,\mu_{k})\\ \vdots \\&\theta_{k}=\theta_{k}(\mu_{1},\mu_{2},\cdots ,\mu_{k})\end{aligned}\right. θ1=θ1(μ1,μ2,,μk)θ2=θ2(μ1,μ2,,μk)θk=θk(μ1,μ2,,μk)
A i A_{i} Ai分别代替上式中的 μ i , i = 1 , 2 , ⋯   , k \mu_{i},i=1,2,\cdots ,k μi,i=1,2,,k,就以
θ i ^ = θ i ( A 1 , A 2 , ⋯   , A k ) , i = 1 , 2 , ⋯   , k \hat{\theta_{i}}=\theta_{i}(A_{1},A_{2},\cdots ,A_{k}),i=1,2,\cdots ,k θi^=θi(A1,A2,,Ak),i=1,2,,k
分别作为 θ i , i = 1 , 2 , ⋯   , k \theta_{i},i=1,2,\cdots ,k θi,i=1,2,,k的估计量,这种估计量称为矩估计量。矩估计量的观察值称为矩估计值

例1:设总体 X X X [ a , b ] [a,b] [a,b]上服从均匀分布, a , b a,b a,b未知, X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn是来自 X X X的样本,试求 a , b a,b a,b的矩估计量

μ 1 = E ( X ) = a + b 2 μ 2 = E ( X 2 ) = D ( X ) + [ E ( X ) ] 2 = ( b − a ) 2 12 + ( a + b ) 2 4 ⇒ { a + b = 2 μ 1 b − a = 12 ( μ 2 − μ 1 2 ) ⇒ { a = μ 1 − 3 ( μ 2 − μ 1 2 ) b = μ 1 + 3 ( μ 2 − μ 1 2 ) \begin{aligned} \mu_{1}&=E(X)=\frac{a+b}{2}\\ \mu_{2}&=E(X^{2})=D(X)+[E(X)]^{2}=\frac{(b-a)^{2}}{12}+ \frac{(a+b)^{2}}{4}\\ &\Rightarrow \left\{\begin{aligned}&a+b=2\mu_{1}\\&b-a=\sqrt{12(\mu_{2}-\mu_{1}^{2})}\end{aligned}\right.\\ &\Rightarrow \left\{\begin{aligned}&a=\mu_{1}-\sqrt{3(\mu_{2}-\mu_{1}^{2})}\\&b=\mu_{1}+\sqrt{3(\mu_{2}-\mu_{1}^{2})}\end{aligned}\right. \end{aligned} μ1μ2=E(X)=2a+b=E(X2)=D(X)+[E(X)]2=12(ba)2+4(a+b)2 a+b=2μ1ba=12(μ2μ12) a=μ13(μ2μ12) b=μ1+3(μ2μ12)
注意到 1 n ∑ i = 1 n X i 2 − X ˉ 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 \begin{aligned} \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}-\bar{X}^{2}=\frac{1}{n}\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2}\end{aligned} n1i=1nXi2Xˉ2=n1i=1n(XiXˉ)2,分别以 A 1 , A 2 A_{1},A_{2} A1,A2代替 μ 1 , μ 2 \mu_{1},\mu_{2} μ1,μ2,得到 a , b a,b a,b的矩估计量分别为
a ^ = A 1 − 3 ( A 2 − A 1 2 ) = X ˉ − 3 n ∑ i = 1 n ( X i − X ˉ ) 2 b ^ = A 1 + 3 ( A 2 − A 1 2 ) = X ˉ + 3 n ∑ i = 1 n ( X i − X ˉ ) 2 \begin{aligned} \hat{a}&=A_{1}-\sqrt{3(A_{2}-A_{1}^{2})}=\bar{X}-\sqrt{\frac{3}{n}\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2}}\\ \hat{b}&=A_{1}+\sqrt{3(A_{2}-A_{1}^{2})}=\bar{X}+\sqrt{\frac{3}{n}\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2}} \end{aligned} a^b^=A13(A2A12) =Xˉn3i=1n(XiXˉ)2 =A1+3(A2A12) =Xˉ+n3i=1n(XiXˉ)2

例2:设总体 X X X的均值 μ \mu μ及方差 σ 2 \sigma^{2} σ2都存在,且有 σ 2 > 0 \sigma^{2}>0 σ2>0。但 μ , σ 2 \mu,\sigma^{2} μ,σ2均为未知,又设 X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn是来自 X X X得样本。试求 μ , σ 2 \mu,\sigma^{2} μ,σ2的矩估计量

μ 1 = E ( X ) = μ μ 2 = E ( X 2 ) = D ( X ) + [ E ( X ) ] 2 = σ 2 + μ ⇒ { μ = μ 1 σ 2 = μ 2 − μ 1 2 \begin{aligned} \mu_{1}&=E(X)=\mu\\ \mu_{2}&=E(X^{2})=D(X)+[E(X)]^{2}=\sigma^{2}+\mu\\ &\Rightarrow \left\{\begin{aligned}&\mu=\mu_{1}\\&\sigma^{2}=\mu_{2}-\mu_{1}^{2}\end{aligned}\right. \end{aligned} μ1μ2=E(X)=μ=E(X2)=D(X)+[E(X)]2=σ2+μ{μ=μ1σ2=μ2μ12
分别以 A 1 , A 2 A_{1},A_{2} A1,A2代替 μ 1 , μ 2 \mu_{1},\mu_{2} μ1,μ2,得 μ \mu μ σ 2 \sigma^{2} σ2的矩估计量分别为
μ ^ = A 1 = X ˉ σ 2 ^ = A 2 − A 1 2 = 1 n ∑ i = 1 n X i 2 − X ˉ 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 \begin{aligned} \hat{\mu}&=A_{1}=\bar{X}\\ \hat{\sigma^{2}}&=A_{2}-A_{1}^{2}=\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}-\bar{X}^{2}=\frac{1}{n}\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2} \end{aligned} μ^σ2^=A1=Xˉ=A2A12=n1i=1nXi2Xˉ2=n1i=1n(XiXˉ)2

所得结果表名,总体均值与方差的矩估计量的表达式不因不同的总体分布而异

最大似然估计

若总体 X X X属离散型,其分布律 P { X = x } = p { x ; θ } , θ ∈ Θ P \left\{X=x\right\}=p \left\{x;\theta\right\},\theta \in \Theta P{X=x}=p{x;θ},θΘ的形式已知, θ \theta θ为待估参数, Θ \Theta Θ θ \theta θ可能取值的范围。设 X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn是来自 X X X的样本,则 X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn的联合分布律为
∏ i = 1 n p ( x i ; θ ) \prod\limits_{i=1}^{n}p(x_{i};\theta) i=1np(xi;θ)
又设 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn是相应于样本 X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn的一个样本值。易知样本 X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn取到观察值 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn的概率,亦即事件 { X 1 = x 1 , X 2 = x 2 , ⋯   , X n , x n } \left\{X_{1}=x_{1},X_{2}=x_{2},\cdots ,X_{n},x_{n}\right\} {X1=x1,X2=x2,,Xn,xn}发生的概率为
L ( θ ) = L ( x 1 , x 2 , ⋯   , x n ; θ ) = ∏ i = 1 n p ( x i ; θ ) , θ ∈ Θ L(\theta)=L(x_{1},x_{2},\cdots,x_{n};\theta)=\prod\limits_{i=1}^{n}p(x_{i};\theta),\theta \in \Theta L(θ)=L(x1,x2,,xn;θ)=i=1np(xi;θ),θΘ
这一概率随 θ \theta θ的取值而变化,它是 θ \theta θ的函数, L ( θ ) L(\theta) L(θ)称为样本的似然函数(注意,这里 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn是已知的样本值,它们都是常数
θ \theta θ取值的可能范围 Θ \Theta Θ内挑选使似然函数 L ( x 1 , x 2 , ⋯   , x n ; θ ) L(x_{1},x_{2},\cdots,x_{n};\theta) L(x1,x2,,xn;θ)达到最大的参数值 θ ^ \hat{\theta} θ^,作为参数 θ \theta θ的估计值。即使 θ ^ \hat{\theta} θ^使
L ( x 1 , x 2 , ⋯   , x n ; θ ^ ) = max ⁡ θ ∈ Θ L ( x 1 , x 2 , ⋯   , x n ; θ ) L(x_{1},x_{2},\cdots,x_{n};\hat{\theta})=\max\limits_{\theta \in \Theta}L(x_{1},x_{2},\cdots,x_{n};\theta) L(x1,x2,,xn;θ^)=θΘmaxL(x1,x2,,xn;θ)
这样得到的 θ ^ \hat{\theta} θ^与样本值 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn有关,常记为 θ ^ ( x 1 , x 2 , ⋯   , x n ) \hat{\theta}(x_{1},x_{2},\cdots,x_{n}) θ^(x1,x2,,xn),称为参数 θ \theta θ的最大似然估计值,而相应的统计量 θ ^ ( X 1 , X 2 , ⋯   , X n ) \hat{\theta}(X_{1},X_{2},\cdots,X_{n}) θ^(X1,X2,,Xn)称为参数 θ \theta θ的最大似然估计量

若总体 X X X属连续型,其概率密度 f ( x ; θ ) , θ ∈ Θ f(x;\theta),\theta \in \Theta f(x;θ),θΘ的形式已知, θ \theta θ为待估参数, Θ \Theta Θ θ \theta θ可能取值的范围,设 X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn是来自 X X X得样本,则 X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn的联合密度为
∏ i = 1 n f ( x i , θ ) \prod\limits_{i=1}^{n}f(x_{i},\theta) i=1nf(xi,θ)
x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn是相应于样本 X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn的一个样本值,则随机点 ( X 1 , X 2 , ⋯   , X n ) (X_{1},X_{2},\cdots,X_{n}) (X1,X2,,Xn)落在点 ( x 1 , x 2 , ⋯   , x n ) (x_{1},x_{2},\cdots,x_{n}) (x1,x2,,xn)的邻域(边长分别为 d x 1 , d x 2 , ⋯   , d x n dx_{1},d x_{2} ,\cdots ,d x_{n} dx1,dx2,,dxn n n n维立方体)内的概率近似地为
∏ i = 1 n f ( x i ; θ ) d x \prod\limits_{i=1}^{n}f(x_{i};\theta)dx i=1nf(xi;θ)dx
其值随 θ \theta θ的取值而变化,与离散型的情况一样,我们取 θ \theta θ的估计量 θ ^ \hat{\theta} θ^使概率取到最大值,但因子 ∏ i = 1 n d x i \prod\limits_{i=1}^{n}dx_{i} i=1ndxi不随 θ \theta θ而变,故只需考虑函数
L ( θ ) = L ( x 1 , x 2 , ⋯   , x n ; θ ) = ∏ i = 1 n f ( x i ; θ ) L(\theta)=L(x_{1},x_{2},\cdots,x_{n} ;\theta)=\prod\limits_{i=1}^{n}f(x_{i};\theta) L(θ)=L(x1,x2,,xn;θ)=i=1nf(xi;θ)
的最大值,这里 L ( θ ) L(\theta) L(θ)称为样本的似然函数,若
L ( x 1 , x 2 , ⋯   , x n ; θ ) = max ⁡ θ ∈ Θ L ( x 1 , x 2 , ⋯   , x n ; θ ) L(x_{1},x_{2},\cdots,x_{n};\theta)=\max\limits_{\theta \in \Theta}L(x_{1},x_{2},\cdots,x_{n};\theta) L(x1,x2,,xn;θ)=θΘmaxL(x1,x2,,xn;θ)
则称 θ ^ ( x 1 , x 2 , ⋯   , x n ) \hat{\theta}(x_{1},x_{2},\cdots,x_{n}) θ^(x1,x2,,xn) θ \theta θ的最大似然估计值,称 θ ^ ( X 1 , X 2 , ⋯   , X n ) \hat{\theta}(X_{1},X_{2},\cdots,X_{n}) θ^(X1,X2,,Xn) θ \theta θ的最大似然估计量

这样,确定最大似然估计量的问题就归结为微分学中秋最大值的问题了,
在很多情形下, p ( x ; θ ) p(x;\theta) p(x;θ) f ( x ; θ ) f(x;\theta) f(x;θ)关于 θ \theta θ可微,这时 θ ^ \hat{\theta} θ^常可从方程
d d θ L ( θ ) = 0 \frac{d}{d \theta}L(\theta)=0 dθdL(θ)=0
解得。又因 L ( θ ) L(\theta) L(θ) L ( ln ⁡ θ ) L(\ln \theta) L(lnθ)在同一 θ \theta θ处取到极值,因此, θ \theta θ的最大似然估计 θ \theta θ也可以从方程
d d θ ln ⁡ L ( θ ) = 0 \frac{d}{d \theta}\ln L(\theta)=0 dθdlnL(θ)=0
求得,称为对数似然方程

例3:设 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^{2}) XN(μ,σ2),其中 μ , σ 2 ( σ > 0 ) \mu,\sigma^{2}(\sigma>0) μ,σ2(σ>0)均为未知参数,从总体取得样本为 X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn,试求

  • μ \mu μ σ 2 \sigma^{2} σ2的矩估计

E ( X ) = μ E ( X 2 ) = D ( X ) + [ E ( X ) ] 2 = σ 2 + μ 2 ⇒ { μ = X ˉ σ 2 + μ 2 = 1 n ∑ i = 1 n X i 2 ⇒ { μ ^ = X ˉ σ ^ = 1 n ∑ i = 1 n X i 2 − X ˉ 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 \begin{aligned} E(X)&=\mu\\ E(X^{2})&=D(X)+[E(X)]^{2}=\sigma^{2}+\mu^{2}\\ & \Rightarrow \left\{\begin{aligned}&\mu=\bar{X}\\&\sigma^{2}+\mu^{2}=\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}\end{aligned}\right.\\ & \Rightarrow \left\{\begin{aligned}&\hat{\mu}=\bar{X}\\&\hat{\sigma}=\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}-\bar{X}^{2}=\frac{1}{n}\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2}\end{aligned}\right. \end{aligned} E(X)E(X2)=μ=D(X)+[E(X)]2=σ2+μ2 μ=Xˉσ2+μ2=n1i=1nXi2 μ^=Xˉσ^=n1i=1nXi2Xˉ2=n1i=1n(XiXˉ)2

二阶矩可以用中心矩直接得到 σ ^ = 1 n ∑ i = 1 n X i 2 − X ˉ 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 \begin{aligned} \hat{\sigma}=\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}-\bar{X}^{2}=\frac{1}{n}\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2}\end{aligned} σ^=n1i=1nXi2Xˉ2=n1i=1n(XiXˉ)2

  • μ \mu μ σ 2 \sigma^{2} σ2的最大似然估计

由于 X X X的密度为 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ \begin{aligned} \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}},-\infty<x<+\infty\end{aligned} 2π σ1e2σ2(xμ)2,<x<+,所以
L ( μ , σ 2 ) = ( 1 2 π σ ) n e − 1 2 σ 2 ∑ i = 1 n ( X i − μ ) 2 ln ⁡ L ( μ , σ 2 ) = − n 2 ln ⁡ ( 2 π ) − n 2 ln ⁡ ( σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( X i − μ ) 2 ⇒ { ∂ ln ⁡ L ∂ μ = 1 σ 2 ∑ i = 1 n ( X i − μ ) = 0 ∂ ln ⁡ L ∂ σ 2 = − n 2 1 σ 2 + 1 2 ( σ 2 ) 2 ∑ i = 1 n ( X i − μ ) 2 = 0 ⇒ { μ ^ − X ˉ σ 2 ^ = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 \begin{aligned} L(\mu,\sigma^{2})&=\left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{n}e^{-\frac{1}{2\sigma^{2}}\sum\limits_{i=1}^{n}(X_{i}-\mu)^{2}}\\ \ln L(\mu,\sigma^{2})&=- \frac{n}{2}\ln (2\pi)- \frac{n}{2}\ln (\sigma^{2})- \frac{1}{2\sigma^{2}}\sum\limits_{i=1}^{n}(X_{i}-\mu)^{2}\\ &\Rightarrow \left\{\begin{aligned}&\frac{\partial \ln L}{\partial \mu}=\frac{1}{\sigma^{2}}\sum\limits_{i=1}^{n}(X_{i}-\mu)=0\\&\frac{\partial \ln L}{\partial \sigma^{2}}=- \frac{n}{2} \frac{1}{\sigma^{2}}+\frac{1}{2(\sigma^{2})^{2}}\sum\limits_{i=1}^{n}(X_{i}-\mu)^{2}=0\end{aligned}\right.\\ &\Rightarrow \left\{\begin{aligned}&\hat{\mu}-\bar{X}\\&\hat{\sigma^{2}}=\frac{1}{n}\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2}\end{aligned}\right. \end{aligned} L(μ,σ2)lnL(μ,σ2)=(2π σ1)ne2σ21i=1n(Xiμ)2=2nln(2π)2nln(σ2)2σ21i=1n(Xiμ)2 μlnL=σ21i=1n(Xiμ)=0σ2lnL=2nσ21+2(σ2)21i=1n(Xiμ)2=0 μ^Xˉσ2^=n1i=1n(XiXˉ)2

例4:设总体 X ∼ U [ − θ , θ ] , X 1 , X 2 , ⋯   , X n X \sim U[-\theta,\theta],X_{1},X_{2},\cdots,X_{n} XU[θ,θ],X1,X2,,Xn是来自总体 X X X的简单随机样本,试求参数 θ \theta θ的最大似然估计

似然函数为
L ( θ ) = ∏ i = 1 n f ( x i ) = { 1 ( 2 θ ) n − θ ≤ x 1 , x 2 , ⋯   , x n ≤ θ 0 其他 L(\theta)=\prod\limits_{i=1}^{n}f(x_{i})=\left\{\begin{aligned}& \frac{1}{(2\theta)^{n}}&-\theta \leq x_{1},x_{2},\cdots,x_{n}\leq \theta\\&0&其他\end{aligned}\right. L(θ)=i=1nf(xi)= (2θ)n10θx1,x2,,xnθ其他

这里求导只能得到最小值

显然, θ \theta θ越小, 1 ( 2 θ ) n \begin{aligned} \frac{1}{(2\theta)^{n}}\end{aligned} (2θ)n1越大,但 θ \theta θ必须满足 − θ ≤ x 1 , x 2 , ⋯   , x n ≤ θ -\theta \leq x_{1},x_{2},\cdots,x_{n}\leq \theta θx1,x2,,xnθ,也就是必有
{ θ ≥ max ⁡ ( x 1 , x 2 , ⋯   , x n ) − θ ≤ min ⁡ ( x 1 , x 2 , ⋯   , x n ) ⇒ θ ≥ max ⁡ ( ∣ x 1 ∣ , ∣ x 2 ∣ , ⋯   , ∣ x n ∣ ) \begin{aligned} &\left\{\begin{aligned}&\theta \geq \max (x_{1},x_{2},\cdots,x_{n})\\&-\theta \leq \min (x_{1},x_{2},\cdots,x_{n})\end{aligned}\right.\\ & \Rightarrow \theta \geq \max (|x_{1}|,|x_{2}|,\cdots ,|x_{n}|) \end{aligned} {θmax(x1,x2,,xn)θmin(x1,x2,,xn)θmax(x1,x2,,xn)
即有 θ \theta θ的最大似然估计 θ ^ = max ⁡ ( ∣ X 1 ∣ , ∣ X 2 ∣ , ⋯   , ∣ X n ∣ ) \hat{\theta}=\max (|X_{1}|,|X_{2}|,\cdots ,|X_{n}|) θ^=max(X1,X2,,Xn)

CSDN话题挑战赛第2期
参赛话题:学习笔记

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值