【概率论基础进阶】参数估计-估计量求法和区间估计

矩估计法

用样本矩估计相应的总体矩,用样本矩的函数估计总体矩相应的函数,然后求出要估计的参数,称这种估计法为矩估计法

步骤

X X X为连续型随机变量,其概率密度为 f ( x ; θ 1 , θ 2 , ⋯   , θ k ) f(x;\theta_{1},\theta_{2},\cdots,\theta_{k}) f(x;θ1,θ2,,θk),或 X X X为离散型随机变量,其分布律为 P { X = x } = p ( x ; θ 1 , θ 2 , ⋯   , θ k ) P \left\{X=x\right\}=p(x;\theta_{1},\theta_{2},\cdots,\theta_{k}) P{ X=x}=p(x;θ1,θ2,,θk),其中 θ 1 , θ 2 , ⋯   , θ k \theta_{1},\theta_{2},\cdots,\theta_{k} θ1,θ2,,θk为待估计参数, X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X2,,Xn是来自 X X X的样本。假设总体 X X X的前 k k k阶矩
μ l = E ( X l ) = ∫ − ∞ + ∞ x l f ( x ; θ 1 , θ 2 , ⋯   , θ k ) d x ( X 连续型 ) μ l = E ( X l ) = ∑ x ∈ R X x l p ( x ; θ 1 , θ 2 , ⋯   , θ k ) ( X 离散型 ) \begin{aligned} \mu_{l}=E(X^{l})&=\int_{-\infty}^{+\infty}x^{l}f(x;\theta_{1},\theta_{2},\cdots,\theta_{k})dx \quad (X连续型)\\ \mu_{l}=E(X^{l})&=\sum\limits_{x \in R_{X}}^{}x^{l}p(x;\theta_{1},\theta_{2},\cdots,\theta_{k})\quad (X离散型) \end{aligned} μl=E(Xl)μl=E(Xl)=+xlf(x;θ1,θ2,,θk)dx(X连续型)=xRXxlp(x;θ1,θ2,,θk)(X离散型)
(其中 R X R_{X} RX X X X可能取值的范围)存在。一般来说,它们是 θ 1 , θ 2 , ⋯   , θ k \theta_{1},\theta_{2},\cdots,\theta_{k} θ1,θ2,,θk的函数。基于样本矩
A l = 1 n ∑ i = 1 n X i l A_{l}=\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{l} Al=n1i=1nXil
依概率收敛于相应的总体距 μ l ( l = 1 , 2 , ⋯   , k ) \mu_{l}(l=1,2,\cdots ,k) μl(l=1,2,,k),样本矩的连续函数依概率收敛于相应的总体矩的连续函数,我们就用样本矩作为相应的总体矩的估计量,而以样本矩的连续函数作为相应的总体矩的连续函数的估计量。这种估计方法称为矩估计法。矩估计法的具体做法如下:设
{ μ 1 = μ 1 ( θ 1 , θ 2 , ⋯   , θ k ) μ 2 = μ 2 ( θ 1 , θ 2 , ⋯   , θ k ) ⋮ μ k = μ k ( θ 1 , θ 2 , ⋯   , θ k ) \left\{\begin{aligned}&\mu_{1}=\mu_{1}(\theta_{1},\theta_{2},\cdots,\theta_{k})\\ &\mu_{2}=\mu_{2}(\theta_{1},\theta_{2},\cdots,\theta_{k})\\ &\vdots \\&\mu_{k}=\mu_{k}(\theta_{1},\theta_{2},\cdots,\theta_{k})\end{aligned}\right. μ1=μ1(θ1,θ2,,θk)μ2=μ2(θ1,θ2,,θk)μk=μk(θ1,θ2,,θk)
这是一个包含 k k k个未知参数 θ 1 , θ 2 , ⋯   , θ k \theta_{1},\theta_{2},\cdots,\theta_{k} θ1,θ2,,θk的联立方程组。一般来说,可以从中解出 θ 1 , θ 2 , ⋯   , θ k \theta_{1},\theta_{2},\cdots,\theta_{k} θ1,θ2,,θk,得到
{ θ 1 = θ 1 ( μ 1 , μ 2 , ⋯   , μ k ) θ 2 = θ 2 ( μ 1 , μ 2 , ⋯   , μ k ) ⋮ θ k = θ k ( μ 1 , μ 2 , ⋯   , μ k ) \left\{\begin{aligned}&\theta_{1}=\theta_{1}(\mu_{1},\mu_{2},\cdots ,\mu_{k})\\&\theta_{2}=\theta_{2}(\mu_{1},\mu_{2},\cdots ,\mu_{k})\\ \vdots \\&\theta_{k}=\theta_{k}(\mu_{1},\mu_{2},\cdots ,\mu_{k})\end{aligned}\right. θ1=θ1(μ1,μ2,,μk)θ2=θ2(μ1,μ2,,μk)θk=θk(μ1,μ2,,μk)
A i A_{i} Ai分别代替上式中的 μ i , i = 1 , 2 , ⋯   , k \mu_{i},i=1,2,\cdots ,k μi,i=1,2,,k,就以
θ i ^ = θ i ( A 1 , A 2 , ⋯   , A k ) , i = 1 , 2 , ⋯   , k \hat{\theta_{i}}=\theta_{i}(A_{1},A_{2},\cdots ,A_{k}),i=1,2,\cdots ,k θi^=θi(A1,A2,,Ak),i=1,2,,k
分别作为 θ i , i = 1 , 2 , ⋯   , k \theta_{i},i=1,2,\cdots ,k θi,i=1,2,,k的估计量,这种估计量称为矩估计量。矩估计量的观察值称为矩估计值

例1:设总体 X X X [ a , b ] [a,b] [a,b]上服从均匀分布, a , b a,b a,b未知, X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots,X_{n} X1,X

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值