文章目录
定义:用样本 X 1 , X 2 , ⋯ , X n X_{1},X_{2},\cdots,X_{n} X1,X2,⋯,Xn构造的统计量 θ ^ ( X 1 , X 2 , ⋯ , X n ) \hat{\theta }(X_{1},X_{2},\cdots,X_{n}) θ^(X1,X2,⋯,Xn)来估计参数 θ \theta θ称为点估计,统计量 θ ^ ( X 1 , X 2 , ⋯ , X n ) \hat{\theta }(X_{1},X_{2},\cdots,X_{n}) θ^(X1,X2,⋯,Xn)称为估计量
估计量是随机变量,它所取得的观测值 θ ^ ( x 1 , x 2 , ⋯ , x n ) \hat{\theta }(x_{1},x_{2},\cdots,x_{n}) θ^(x1,x2,⋯,xn)称为估计量,有时将 θ \theta θ的估计量和估计值统称为 θ \theta θ的估计
定义:设 θ ^ \hat{\theta} θ^是 θ \theta θ的估计量,如果 E ( θ ^ ) E(\hat{\theta}) E(θ^),则称 θ ^ = θ ^ ( X 1 , X 2 , ⋯ , X n ) \hat{\theta}=\hat{\theta}(X_{1},X_{2},\cdots,X_{n}) θ^=θ^(X1,X2,⋯,Xn)是未知参数 θ \theta θ的无偏估计量
例1:设总体 X X X的 E ( X ) = μ , D ( X ) = σ 2 E(X)=\mu,D(X)=\sigma^{2} E(X)=μ,D(X)=σ2,从来自总体 X X X的样本 X 1 , X 2 , ⋯ , X n X_{1},X_{2},\cdots,X_{n} X1,X2,⋯,Xn得样本均值 X ˉ = 1 n ∑ i = 1 n X i \bar{X}=\frac{1}{n}\sum\limits_{i=1}^{n}X_{i} Xˉ=n1i=1∑nXi和样本方差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^{2}=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2} S2=n−11i=1∑n(Xi−Xˉ)2,试证 S 2 S^{2} S2是 σ 2 \sigma^{2} σ2的无偏估计
E ( S 2 ) = 1 n − 1 E { ∑ i = 1 n [ ( X i − μ ) − ( X ˉ − μ ) ] 2 } = 1 n − 1 E { ∑ i = 1 n [ ( X i − μ ) 2 − 2 ( X i − μ ) ( X ˉ − μ ) + ( X ˉ − μ ) 2 ] } = 1 n − 1 E [ ∑ i = 1 n ( X i − μ ) 2 − n ( X ˉ − μ ) 2 ] = 1 n − 1 [ ∑ i = 1 n E ( X i − μ ) 2 − n E ( X ˉ − μ ) 2 ] = 1 n − 1 [ n σ 2 − n D ( X ˉ ) ] = σ 2 \begin{aligned} E(S^{2})&=\frac{1}{n-1}E \left\{\sum\limits_{i=1}^{n}[(X_{i}-\mu)-(\bar{X}-\mu)]^{2}\right\}\\ &=\frac{1}{n-1}E \left\{\sum\limits_{i=1}^{n}[(X_{i}-\mu)^{2}-2(X_{i}-\mu)(\bar{X}-\mu)+(\bar{X}-\mu)^{2}]\right\}\\ &=\frac{1}{n-1}E\left[\sum\limits_{i=1}^{n}(X_{i}-\mu)^{2}-n(\bar{X}-\mu)^{2}\right]\\ &=\frac{1}{n-1}\left[\sum\limits_{i=1}^{n}E(X_{i}-\mu)^{2}-nE(\bar{X}-\mu)^{2}\right]\\ &=\frac{1}{n-1}[n \sigma^{2}-n D(\bar{X})]\\ &=\sigma^{2} \end{aligned} E(S2)=n−11E{i=1∑n[(Xi−μ)−(Xˉ−μ)]2}=n−11E{i=1∑n[(Xi−μ)2−2(Xi−μ)(Xˉ−μ)+(Xˉ−μ)2]}=n−11E[i=1∑n(Xi−μ)2−n(Xˉ−μ)2]=n−11[i=1∑nE(Xi−μ)2−nE(Xˉ−μ)2]=n−11[nσ2−nD(Xˉ)]=σ2
之前做过用 ∑ i = 1 n ( X i − X ˉ ) 2 = ∑ i = 1 n X i 2 − n X ˉ 2 \sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2}=\sum\limits_{i=1}^{n}X_{i}^{2}-n \bar{X}^{2} i=1∑n(Xi−Xˉ)2=i=1∑nXi2−nXˉ2做的,这里不再赘述
∑ i = 1 n ( X i − X ˉ ) 2 = ∑ i = 1 n X i 2 − n X ˉ 2 ∑ i = 1 n ( X i − X ˉ ) 2 = ∑ i = 1 n ( X i − μ ) 2 − n ( X ˉ − μ ) 2 \begin{aligned} \sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2}&=\sum\limits_{i=1}^{n}X_{i}^{2}-n \bar{X}^{2}\\ \sum\limits_{i=1}^{n}(X_{i}-\bar{X})^{2}&=\sum\limits_{i=1}^{n}(X_{i}-\mu)^{2}-n(\bar{X}-\mu)^{2}\end{aligned} i=1∑n(Xi−Xˉ)2i=1∑n(Xi−Xˉ)2=i=1∑nXi2−nXˉ2=i=1∑n(Xi−μ)2−n(Xˉ−μ)2
这两个公式都很重要
定义:设 θ 1 ^ \hat{\theta_{1}} θ1^和 θ 2 ^ \hat{\theta_{2}} θ2^都是 θ \theta θ的无偏估计量,且 D ( θ 1 ^ ) ≤ D ( θ 2 ^ ) D(\hat{\theta_{1}})\leq D(\hat{\theta_{2}}) D(θ1^)≤D(θ2^),则称 θ 1 ^ \hat{\theta_{1}} θ1^比 θ 2 ^ \hat{\theta_{2}} θ2^更有效,或 θ 1 ^ \hat{\theta_{1}} θ1^比 θ 2 ^ \hat{\theta_{2}} θ2^更有效估计量
例2:设总体的数学期望和方差分别为 μ \mu μ和 σ 2 \sigma^{2} σ2, X 1 , X 2 X_{1},X_{2} X1,X2是来自总体 X X X的样本。记 X ~ = ( 1 − a ) X 1 + a X 2 \tilde{X}=(1-a)X_{1}+aX_{2} X~=(1−a)X1+aX2,确定 a a a,使 D ( X ~ ) D(\tilde{X}) D(X~)最小
E
(
X
~
)
=
(
1
−
a
)
E
(
X
1
)
+
a
E
(
X
2
)
=
μ
D
(
X
~
)
=
(
1
−
a
)
2
D
(
X
1
)
+
a
2
D
(
X
2
)
=
[
(
1
−
a
)
2
+
a
2
]
σ
2
\begin{aligned} E(\tilde{X})&=(1-a)E(X_{1})+aE(X_{2})=\mu\\ D(\tilde{X})&=(1-a)^{2}D(X_{1})+a^{2}D(X_{2})\\ &=[(1-a)^{2}+a^{2}]\sigma^{2} \end{aligned}
E(X~)D(X~)=(1−a)E(X1)+aE(X2)=μ=(1−a)2D(X1)+a2D(X2)=[(1−a)2+a2]σ2
显然当
a
=
1
2
\begin{aligned} a=\frac{1}{2}\end{aligned}
a=21时
D
(
X
~
)
D(\tilde{X})
D(X~)最小
可以证明如果样本为 X 1 , X 2 , ⋯ , X n X_{1},X_{2},\cdots,X_{n} X1,X2,⋯,Xn时, μ \mu μ的估计 X ˉ = 1 n ∑ i = 1 n X i \begin{aligned} \bar{X}=\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}\end{aligned} Xˉ=n1i=1∑nXi是形如
X ~ = ∑ i = 1 n a i X i ( 其中 ∑ i = 1 n a i = 1 ) \tilde{X}=\sum\limits_{i=1}^{n}a_{i}X_{i}(其中\sum\limits_{i=1}^{n}a_{i}=1) X~=i=1∑naiXi(其中i=1∑nai=1)
的估计中最有效的
定义:设 θ ~ ( X 1 , X 2 , ⋯ , X n ) \tilde{\theta}(X_{1},X_{2},\cdots,X_{n}) θ~(X1,X2,⋯,Xn)是 θ \theta θ的估计,如果 θ ~ \tilde{\theta} θ~依概率收敛于 θ \theta θ,则称 θ ~ ( X 1 , X 2 , ⋯ , X n ) \tilde{\theta}(X_{1},X_{2},\cdots,X_{n}) θ~(X1,X2,⋯,Xn)为 θ \theta θ的一致估计量
例3:设总体
X
X
X的概率密度为
f
(
x
;
θ
)
=
{
2
x
3
θ
θ
<
x
<
2
θ
0
其他
f(x;\theta)=\left\{\begin{aligned}& \frac{2x}{3\theta}&\theta<x<2\theta\\&0&其他\end{aligned}\right.
f(x;θ)=⎩
⎨
⎧3θ2x0θ<x<2θ其他
其中
θ
\theta
θ是未知参数,
X
1
,
X
2
,
⋯
,
X
n
X_{1},X_{2},\cdots,X_{n}
X1,X2,⋯,Xn为来自总体的简单随机样本,已知
E
(
c
∑
i
=
1
n
X
i
2
)
=
θ
2
E(c \sum\limits_{i=1}^{n}X_{i}^{2})=\theta^{2}
E(ci=1∑nXi2)=θ2,则
c
=
(
)
c=()
c=()
E ( c ∑ i = 1 n X i 2 ) = c ∑ i = 1 n E ( X i 2 ) = c n E ( X 2 ) = c n ∫ θ 2 θ x 2 f ( x ; θ ) d x = c n ∫ θ 2 θ 2 x 3 3 θ 2 d x = c n ⋅ 5 2 θ 2 = θ 2 ⇒ c = 2 5 n \begin{aligned} E(c \sum\limits_{i=1}^{n}X_{i}^{2})&=c \sum\limits_{i=1}^{n}E(X_{i}^{2})\\ &=cn E(X^{2})\\ &=cn \int_{\theta}^{2\theta}x^{2}f(x;\theta)dx\\ &=cn \int_{\theta}^{2\theta} \frac{2x^{3}}{3\theta^{2}}dx\\ &=cn \cdot \frac{5}{2}\theta^{2}=\theta^{2}\Rightarrow c=\frac{2}{5n} \end{aligned} E(ci=1∑nXi2)=ci=1∑nE(Xi2)=cnE(X2)=cn∫θ2θx2f(x;θ)dx=cn∫θ2θ3θ22x3dx=cn⋅25θ2=θ2⇒c=5n2
例4:设总体
X
X
X的概率密度为
f
(
x
)
=
{
2
e
−
x
(
x
−
θ
)
x
>
θ
0
x
≤
θ
f(x)=\left\{\begin{aligned}&2e^{-x(x-\theta)}&x>\theta\\&0&x \leq \theta\end{aligned}\right.
f(x)={2e−x(x−θ)0x>θx≤θ
其中
θ
>
0
\theta>0
θ>0是未知参数,从总体
X
X
X中抽取简单随机样本
X
1
,
X
2
,
⋯
,
X
n
X_{1},X_{2},\cdots,X_{n}
X1,X2,⋯,Xn,记
θ
^
=
min
{
X
1
,
X
2
,
⋯
,
X
n
}
\hat{\theta}=\min \left\{X_{1},X_{2},\cdots,X_{n}\right\}
θ^=min{X1,X2,⋯,Xn}
- 求总体 X X X的分布函数 F ( x ) F(x) F(x)
F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( x ) d x = { ∫ 0 x 2 e − 2 ( x − θ ) d x = 1 − e − 2 ( x − θ ) x > θ 0 x ≤ θ \begin{aligned} F(x)&=P \left\{X \leq x\right\}\\ &=\int_{-\infty}^{x}f(x)dx\\ &=\left\{\begin{aligned}&\int_{0}^{x}2e^{-2(x-\theta)}dx=1-e^{-2(x-\theta)}&x>\theta\\&0&x \leq \theta\end{aligned}\right. \end{aligned} F(x)=P{X≤x}=∫−∞xf(x)dx=⎩ ⎨ ⎧∫0x2e−2(x−θ)dx=1−e−2(x−θ)0x>θx≤θ
- 求统计量 θ ^ \hat{\theta} θ^的分布函数 F θ ^ ( x ) F_{\hat{\theta}}(x) Fθ^(x)
F θ ^ ( X ) = P { θ ^ ≤ x } = P { min ( X 1 , X 2 , ⋯ , X n ) ≤ x } = 1 − P { min ( X 1 , X 2 , ⋯ , X n ) > x } = 1 − P { X 1 > x , X 2 > x , ⋯ , X n > x } = 1 − P { X 1 > x } P { X 2 > x } ⋯ P { X n > x } = 1 − [ 1 − F ( x ) ] n = { 1 − e 2 n ( x − θ ) x > θ 0 x ≤ θ \begin{aligned} F_{\hat{\theta}}(X)&=P \left\{\hat{\theta}\leq x\right\}\\ &=P \left\{\min (X_{1},X_{2},\cdots,X_{n})\leq x\right\}\\ &=1-P \left\{\min (X_{1},X_{2},\cdots,X_{n})>x\right\}\\ &=1-P \left\{X_{1}>x,X_{2}>x,\cdots ,X_{n}>x\right\}\\ &=1-P \left\{X_{1}>x\right\}P \left\{X_{2}>x\right\}\cdots P \left\{X_{n}>x\right\}\\ &=1-[1-F(x)]^{n}\\ &=\left\{\begin{aligned}&1-e^{2n(x-\theta)}&x>\theta\\&0&x \leq \theta\end{aligned}\right. \end{aligned} Fθ^(X)=P{θ^≤x}=P{min(X1,X2,⋯,Xn)≤x}=1−P{min(X1,X2,⋯,Xn)>x}=1−P{X1>x,X2>x,⋯,Xn>x}=1−P{X1>x}P{X2>x}⋯P{Xn>x}=1−[1−F(x)]n={1−e2n(x−θ)0x>θx≤θ
- 如果用 θ ^ \hat{\theta} θ^作为 θ \theta θ的估计量,讨论它是否具有性质 E θ ^ = θ E \hat{\theta}=\theta Eθ^=θ
f
θ
^
(
x
)
=
F
θ
^
′
(
x
)
=
{
2
n
e
−
2
n
(
x
−
θ
)
x
>
θ
0
x
≤
θ
E
θ
^
=
∫
−
∞
+
∞
x
f
θ
^
(
x
)
d
x
=
∫
0
+
∞
x
⋅
2
n
e
−
2
n
(
x
−
θ
)
d
x
=
θ
+
1
2
θ
≠
θ
\begin{aligned} f_{\hat{\theta}}(x)&=F'_{\hat{\theta}}(x)=\left\{\begin{aligned}&2ne^{-2n(x-\theta)}&x>\theta\\&0&x \leq \theta\end{aligned}\right.\\ E \hat{\theta}&=\int_{-\infty}^{+\infty}xf_{\hat{\theta}}(x)dx\\ &=\int_{0}^{+\infty}x \cdot 2ne^{-2n(x-\theta)}dx\\ &=\theta+ \frac{1}{2\theta}\ne \theta \end{aligned}
fθ^(x)Eθ^=Fθ^′(x)={2ne−2n(x−θ)0x>θx≤θ=∫−∞+∞xfθ^(x)dx=∫0+∞x⋅2ne−2n(x−θ)dx=θ+2θ1=θ
所以不具有性质
E
θ
^
=
θ
E \hat{\theta}=\theta
Eθ^=θ
CSDN话题挑战赛第2期
参赛话题:学习笔记