【白板推导系列笔记】支持向量机-约束优化问题-弱对偶性证明

本文介绍了支持向量机中,如何通过引入拉格朗日乘子来处理约束优化问题,并证明了弱对偶性的概念。通过对约束条件的分析,展示了在满足约束条件下拉格朗日函数的行为,以及弱对偶性如何表示为原问题与对偶问题之间的关系。文章还提及后续将探讨的几何解释、Slater条件和KKT条件。
摘要由CSDN通过智能技术生成

简单来说,引入拉格朗日乘子是为了强制要求所有的约束条件必须被满足, x x x违反约束条件时, L ( x , α , β ) → + ∞ L(x,\alpha,\beta) \rightarrow +\infty L(x,α,β)+ x x x满足约束条件时, L ( x , α , β ) = f ( x ) L(x,\alpha,\beta) = f(x) L(x,α,β)=f(x)

假设 f ( x ) , c i ( x ) , h j ( x ) f(x),c_i(x),h_j(x) f(x)ci(x)hj(x)是定义在 R n R^n Rn上的连续可微函数。考虑约束最优化问题(极大化问题可以简单地转换为极小化问题,这里仅讨论极小化问题):
min ⁡ x ∈ R n f ( x ) s . t . m i ( x ) ≤ 0 , i = 1 , 2 , ⋯   , k n j ( x ) = 0 , j = 1 , 2 , ⋯   , l \begin{aligned} \min_{x \in R^n} \hspace{1em} & f(x)\\ s.t. \hspace{1em} & m_i(x) \le 0, \hspace{1em} i=1,2,\cdots,k\\ & n_j(x) = 0, \hspace{1em} j=1,2,\cdots,l \end{aligned} xRnmins.t.f(x)mi(x)0,i=1,2,,knj(x)=0,j=1,2,,l
引入拉格朗日乘子后,得到拉格朗日函数

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值