【OpenCV】51 二值图像分析—使用轮廓逼近

51 二值图像分析—使用轮廓逼近

代码

import cv2 as cv
import numpy as np

src = cv.imread("../images/contours.png")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)

# 轮廓发现
contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for c in range(len(contours)):
    rect = cv.minAreaRect(contours[c])
    cx, cy = rect[0]
    result = cv.approxPolyDP(contours[c], 4, True)
    vertexes = result.shape[0]
    if vertexes == 3:
        cv.putText(src, "triangle", (np.int32(cx), np.int32(cy)),
                   cv.FONT_HERSHEY_SIMPLEX, .7, (0, 0, 255), 2, 8);
    if vertexes == 4:
        cv.putText(src, "rectangle", (np.int32(cx), np.int32(cy)),
                   cv.FONT_HERSHEY_SIMPLEX, .7, (0, 0, 255), 2, 8);
    if vertexes == 6:
        cv.putText(src, "poly", (np.int32(cx), np.int32(cy)),
                   cv.FONT_HERSHEY_SIMPLEX, .7, (0, 0, 255), 2, 8);
    if vertexes > 10:
        cv.putText(src, "circle", (np.int32(cx), np.int32(cy)),
                   cv.FONT_HERSHEY_SIMPLEX, .7, (0, 0, 255), 2, 8);
    print(vertexes)

# 显示
cv.imshow("contours_analysis", src)
cv.waitKey(0)
cv.destroyAllWindows()

实验结果

在这里插入图片描述

解释

对图像二值图像的每个轮廓,可以使用轮廓逼近,逼近每个轮廓的真实几何形状,从而通过轮廓逼近的输出结果判断一个对象是什么形状。OpenCV轮廓逼近的API如下:

approxCurve = cv.approxPolyDP(curve, epsilon, closed[, approxCurve])

其中

  • Curve表示轮廓曲线
  • epsilon 轮廓逼近的顶点距离真实轮廓曲线的最大距离,该值越小表示越逼近真实轮廓
  • close表示是否为闭合区域
  • approxCurve 表示轮廓逼近输出的顶点数目

所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值