Function Calling的架构模型,如下
所为的Function Calling就是函数调用,调用外部的函数,例如让大模型告诉我们我目前位置的坐标,大模型肯定不知道,此时让大模型调用指定的函数,获取信息后,再给到大模型,然后大模型再输出到外部给到用户
接口:
人与软件之间的接口叫GUI接口,应用程序之间的接口叫API接口。自然语言在与大模型之间的交互靠的是Prompt, 就是自然语言传递,是不是更接近普通大众,更能被人们接受,受众人群也更广泛,因为我们说句话他就能识别到。
大模型的缺陷:并非知晓一切
训练数据不可能什么都有。垂直、非公开数据必有欠缺,不知道最新信息。大模型的训练周期很长,且更新一次耗资巨大,还有越训越傻的风险。所以它 不可能实时训练。OpenAI 模型知识截止日期:
GPT-3.5 知识截至 2021 年 9 月
GPT-4-turbo 知识截至 2023 年 12 月
GPT-4o-mini 知识截至 2023 年 10 月
GPT-4o 知识截至 2023 年 10 月
GPT-4 知识截至 2021 年 9 月
GPT-o1模型是2024年9月13日发布的,但没有查到知识的截至日期
没有「真逻辑」。它表现出的逻辑、推理,是训练文本的统计规律,而不是真正的逻辑,所以有幻觉。
所以:大模型需要连接真实世界,并对接真逻辑系统执行确定性任务
下面就举例function calling的用法
1.调用本地函数
单function的调用
# 初始化
from openai import OpenAI
from dotenv import load_dotenv, find_dotenv
import json
_ = load_dotenv(find_dotenv())
client = OpenAI()
def print_json(data):
"""
打印参数。如果参数是有结构的(如字典或列表),则以格式化的 JSON 形式打印;
否则,直接打印该值。
"""
if hasattr(data, 'model_dump_json'):
data = json.loads(data.model_dump_json())
if (isinstance(data, (list))):
for item in data:
print_json(item)
elif (isinstance(data, (dict))):
print(json.dumps(
data,
indent=4,
ensure_ascii=False
))
else:
print(data)
def get_completion(messages, model="gpt-4o-mini"):
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0.7,
tools=[{
# 用 JSON 描述函数。可以定义多个。由大模型决定调用谁。也可能都不调用
"type": "function",
"function": {
"name": "sum",
"description": "加法器,计算一组数的和",
"parameters": {
"type": "object",
"properties": {
"numbers": {
"type": "array",
"items": {
"type": "number"
}