19个国内AI Agent构建平台

 1. 文心智能体平台,

百度推出的基于文心大模型的Agent平台,支持开发者根据自身行业领域、应用场景,选取不同类型的开发方式。体验地址:https://agents.baidu.com

2. Coze(扣子)

,字节跳动推出的一个AI聊天机器人和应用程序编辑开发平台,可以创建类GPTs机器人,该产品还有海外版。体验地址:https://www.coze.cn

3. 豆包,

字节跳动推出的另一款用于构建类GPTs聊天机器人的AI应用构建平台。体验地址:https://www.doubao.com

4. 飞书智能伙伴:

字节跳动旗下在线办公品牌飞书的AI产品,是一个开放的 AI 服务框架”,支持多款大模型以及用户自定义构建智能伙伴。体验地址:

https://www.feishu.cn/product/ai_companion

5. 钉钉AI助理,

一款智能化工具,汇集了钉钉的AI产品能力,企业用户和个人用户可以根据需求创建个性化AI助理。体验地址:https://page.dingtalk.com/wow/dingtalk/default/dingtalk/I0HfYX4QStBIpLgxnZQe

6. 阿里云的ModelScopeGPT

,阿里云Mota社区推出的国内首个大型模型调用工具,旨在实现模型间的协作完成任务,推动AI技术的应用和发展。体验地址:

https://www.modelscope.cn/studios/iic/ModelScopeGPT/summary

7. 讯飞友伴,

由科大讯飞推出,是一个基于知识库的chatbot构建平台。体验地址:https://xinghuo.xfyun.cn/

8. 智谱清言,

智谱推出的生成式AI助手,可以构建智能体,在工作、学习和日常生活中为用户解答各类问题,完成各种任务。体验地址:

https://chatglm.cn/main/alltoolsdetail

9. SkyAgents,

昆仑万维旗下的AI Agent开发平台,允许用户通过自然语言输入和可视化拖拽来快速构建服务于具体业务场景的AI Agents。体验地址:

https://model-platform-skyagents.tiangong.cn/home/agent

10. 实在智能的实在Agent,

一款基于AI+RPA技术的企业和个人用户“文生智能助理”,允许用户通过一段文字/语音传达指令,即可模拟人类操作和决策流程,实现企业业务流程自动化和智能化,提升工作效率和准确性。体验:已开放定向公测,5月底大面积公测。

11. AskXBOT,

澜码科技发布的企业级AI Agent平台,集Agent与工作流设计、开发、使用、管理于一体。官网:https://www.xbotspace.com

12. 运小沓·数字员工,

壹沓科技推出的基于大模型的数字员工平台,能够为企业提供基于大模型技术驱动的数字员工聚合及训练服务,帮助企业轻松构建专有的“数字员工团队”。官网:https://www.1data.info

13. Dify.AI:

一个LLM应用开发平台,支持超过10万个应用的构建,集成了Backend as Service和LLMOps的理念,适用于构建生成式AI原生应用,主打基于任何LLM创建AI Agent。体验地址:https://dify.ai/zh

14. Vanus AI,帮助企业链接大模型和构建知识库,进行提示词(prompt engineering)调试,搭建企业的AI应用(AI Agent)。体验地址:http://vanus.cn

15. 斑头雁智能betteryeah,一个企业级AI Agent构建平台,服务包括从AI知识库搭建训练到智能客服系统本地部署的全套流程。体验地址:

https://www.betteryeah.com

16. CoLingo,一个AI应用开发一体化平台,为全栈开发人员提供了一套全面的工具,开发人员可以将AI功能无缝集成到自己的应用程序中,并创建与自己的数据进行交互的个性化AI Agent。体验地址:https://colingo.ai

17. 汇智智能Gnomic智能体平台,一个AI Agent多模态平台,旨在为个人和企业提供多样化的智能体服务,支持多模态的AI Agent创作,帮助用户快速设计和训练个性化的智能体。体验地址:https://www.gnomic.cn

18. tyrion.ai,一个AI agent开发平台,为给客户提供端到端的AI agent解决方案,赋能其沉淀专家知识库和搭建专家。官网:https://tyrion.ai/

19. 未来式智能Autoagents,其推出的企业级Agent应用构建平台-灵搭,是一款面向业务人员使用的无代码的Agent产品,能够推动企业新时代知识工作流水线的构建。官网:https://autoagents.ai/

需要说明的是,国内很多AI Agent产品也主打Agent构建平台,只是有些是To B产品C端用户无法体验,还有些处在项目早期目前尚无法体验。

### 关于 AI Agents 的研究论文列表 以下是与 AI Agents 相关的研究论文列表,这些论文涵盖了自动化任务、多智能体系统以及人类行为分析等多个领域: #### 自动化任务中的 AI Agent 一篇关于自动化的文章提到,“AI Agent for automating repetitive tasks” 是 Bardeen 提供的服务之一[^1]。这表明该平台可能基于某些先进的研究成果来实现其功能。 虽然具体论文未提及,但可以推测此类应用依赖的核心技术包括但不限于强化学习 (Reinforcement Learning) 和模仿学习 (Imitation Learning),以下是一些经典的相关论文: - **Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.** - 这本书被认为是理解强化学习的基础教材,适用于设计能够完成重复性工作的自主代理。 - **Silver, D., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.** - AlphaGo 使用的方法展示了如何通过深度神经网络和蒙特卡洛树搜索相结合的方式训练高效的决策型 AI Agent。 #### 多智能体系统的理论基础 Taro Langner 整理的一份清单中提到了许多重要的 AI 领域参考资料[^2]。其中涉及多智能体协作的部分尤其值得关注,因为这是构建复杂环境下的分布式 AI Agent 所必需的知识点。 推荐几篇经典的多智能体系统相关文献如下: - **Busoniu, L., Babuska, R., De Schutter, B., & Ernst, D. (2008). Reinforcement learning and dynamic programming using function approximators. CRC Press.** - 此书深入探讨了函数逼近器在解决大规模状态空间问题上的作用,这对于开发高效能的多智能体算法至关重要。 - **Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., & Mordatch, I. (2017). Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in Neural Information Processing Systems, 30.** - MADDPG 方法开创性地解决了混合合作竞争环境下多个智能体之间的交互难题。 #### 人脸与姿态识别背景下的 AI Agent 应用案例 来自 IEEE International Conference on Automatic Face and Gesture Recognition 的最新进展显示,在面部表情理解和人体动作捕捉方面取得了显著成果[^3]。这类技术通常被集成到社交机器人或者虚拟助手当中作为感知模块的一部分。 建议阅读下面这篇有关视觉驱动型 AI Agent 的代表性工作: - **Pavlovic, V. I., Sharma, R., Huang, T. S. (1997). Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7): 677-695.** --- ```python import requests def fetch_papers(topic): url = f"https://api.semanticscholar.org/graph/v1/paper/search?query={topic}&limit=10" response = requests.get(url) data = response.json() return [(paper['title'], paper['url']) for paper in data['data']] papers_list = fetch_papers('AI Agent') for title, link in papers_list: print(f"- [{title}]({link})") ``` 上述 Python 脚本可以帮助动态获取最新的学术资源链接。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai君臣

学会的就要教给人

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值