时间序列预测---差分自回归移动平均模型(ARIMA模型)

ARIMA模型是一种用于时间序列预测的方法,涉及数据平稳性、差分、自回归和移动平均等概念。在建模过程中,首先检查数据的平稳性,通过差分处理使之变得平稳。接着,ARIMA结合自回归(AR)和移动平均(MA)特性,用于将非平稳时间序列转化为平稳序列,并进行预测。建模步骤包括数据预处理、平稳性检查、非白噪声检验及模型定阶,常用定阶方法有ACF/PACF图、信息准则和热力图。
摘要由CSDN通过智能技术生成

ARIMA模型简介

1. 数据平稳性

了解ARIMA模型就要先了解数据的平稳性,样本数据获得的时间序列,在未来一段时间沿着一个“趋势”发展下去,只有具有平稳性的数据才可以做预测

  • 平稳性的数据均值和方差不发生明显变化
    方差越大数据的波动越大
    在这里插入图片描述

  • 平稳性分为严平稳和弱平稳

    严平稳:严平稳表示的分布不随时间的改变而改变,如:白噪声,无论怎么取,都是期望为0,方差为1;
    弱平稳:期望与相关系数不变,未来某时刻的t值Xt就要依赖于它的过去信息,所以需要依赖性;

2. 差分法

  • 时间序列在t与t-1时刻的差值
fig = plt.figure(figsize=(12, 8))
diff1 = data.diff(1)
diff1.plot()
  • 在一阶差分的基础上进行二阶差分,看数据是否趋于平稳,一般一阶差分后就开始趋于平稳

3. 自回归模型(AR)

  • 描述当前值与历史值之间的关系,用变量自身的历史时间数据对自身进行预测

  • 自回归模型必须满足平稳性的要求
    p阶自回归过程的公式定义:在这里插入图片描述

  • 自回归模型的局限性
    自动回归模型是根据自身的历史数据进行预测,数据必须具有平稳性和自相关性,如果自相关系数太小则不宜采用

3.移动平均模型(MA)

  • 移动平均模型关注的是自回归模型中误差项的累加

  • q阶自回归过程的公式定义:在这里插入图片描述

4.差分自回归移动平均模型(ARIMA)

  • AR是自回归,p为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。

  • 原理:将非平稳时间序列转换为平稳时间序列。然后将因变量仅对它滞后值(阶数)以及随机误差项的现值和滞后值进行回归所建立的模型。

5.ARIMA建模过程

  1. 数据预处理,将数据处理成Series格式
  2. 画图观察数据平稳性,若不平稳,可用差分法或指数平滑法对数据进行平稳化处理
  3. 非白噪声检验
  p_value = acorr_ljungbox(timeseries, lags=1) 
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值