社交网络的表示学习任务
在日常生活中,会遇到许多的社交网络,比如微博等,展现了不同用户与微博内容之间的各种关系,还有论文之中的网络,展现了论文作者,作者研究课题,论文出版杂志社之间的关系。网络表示学习的任务就是学习一种对这些节点的表示方法,以方便其用于机器学习的任务中,如分类,连接预测等1。
异构图的网络表示
现在对于同构图的网络表示有更多的研究,不过异构图在生活中使用的更为广泛。异构图指的是图中的节点有不同的形式,图中节点之间的关系也有多种不同的形式。在对异构图的研究中,有以下几种方法:
本文探讨了社交网络的表示学习任务,重点在于异构图的网络表示。介绍了异构图的概念及其在现实生活的广泛应用,并讨论了现有方法的局限性,包括映射到同构图、不同节点类型编码以及随机游走的扩展。同时,提到了两篇关于异构图学习的论文,聚焦于节点潜在表示和分类学习。
在日常生活中,会遇到许多的社交网络,比如微博等,展现了不同用户与微博内容之间的各种关系,还有论文之中的网络,展现了论文作者,作者研究课题,论文出版杂志社之间的关系。网络表示学习的任务就是学习一种对这些节点的表示方法,以方便其用于机器学习的任务中,如分类,连接预测等1。
现在对于同构图的网络表示有更多的研究,不过异构图在生活中使用的更为广泛。异构图指的是图中的节点有不同的形式,图中节点之间的关系也有多种不同的形式。在对异构图的研究中,有以下几种方法:

被折叠的 条评论
为什么被折叠?