网络表示学习——异构图的分类任务

本文探讨了社交网络的表示学习任务,重点在于异构图的网络表示。介绍了异构图的概念及其在现实生活的广泛应用,并讨论了现有方法的局限性,包括映射到同构图、不同节点类型编码以及随机游走的扩展。同时,提到了两篇关于异构图学习的论文,聚焦于节点潜在表示和分类学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

社交网络的表示学习任务

在日常生活中,会遇到许多的社交网络,比如微博等,展现了不同用户与微博内容之间的各种关系,还有论文之中的网络,展现了论文作者,作者研究课题,论文出版杂志社之间的关系。网络表示学习的任务就是学习一种对这些节点的表示方法,以方便其用于机器学习的任务中,如分类,连接预测等1

异构图的网络表示

现在对于同构图的网络表示有更多的研究,不过异构图在生活中使用的更为广泛。异构图指的是图中的节点有不同的形式,图中节点之间的关系也有多种不同的形式。在对异构图的研究中,有以下几种方法:

  • 将异构图映射到同构图2345,但是这种方法没有完全的探索不同节点之间,或者他们标签之间的联系,甚至提出了不太实际的假设1,所
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值