Minimum Snap轨迹规划详解(一)


转载自https://blog.csdn.net/q597967420/article/details/76099491

1.轨迹规划是什么?

在机器人导航过程中,如何控制机器人从A点移动到B点,通常称之为运动规划。运动规划一般又分为两步:

  • 路径规划:在地图(栅格地图、四\八叉树、RRT地图等)中搜索一条从A点到B点的路径,由一系列离散的空间点(waypoint)组成。
  • 轨迹规划:由于路径点可能比较稀疏、而且不平滑,为了能更好的控制机器人运动,需要将稀疏的路径点变成平滑的曲线或稠密的轨迹点,也就是轨迹。

2.轨迹是什么?

轨迹一般用n阶多项式(polynomial)来表示,即
p ( t ) = p 0 + p 1 t + p 2 t 2 . . . + p n t n = ∑ i = 0 n p i t i p(t)=p_0+p_1t+p_2t^2...+p_nt^n=\sum_{i=0}^{n}p_it^i p(t)=p0+p1t+p2t2...+pntn=i=0npiti
其中 p 0 , p 1 , ⋯   , p n p_0,p_1,\cdots,p_n p0,p1,,pn为轨迹参数(n+1个),设参数向量 p = [ p 0 , p 1 , ⋯   , p n ] T p=[p_0,p_1,\cdots,p_n]^T p=[p0,p1,,pn]T,则轨迹可以写成向量形式,
p ( t ) = [ 1 , t , t 2 , . . . , t n ] ⋅ p p(t) = [1,t,t^2,...,t^n]\cdot p p(t)=[1,t,t2,...,tn]p
对于任意时刻 t t t,可以根据参数计算出轨迹的位置P(osition),速度V(elocity),加速度A(cceleration),jerk,snap等。
v ( t ) = p ′ ( t ) = [ 0 , 1 , 2 t , 3 t 2 , 4 t 3 , ⋯   , n t n − 1 ] ⋅ p a ( t ) = p ′ ′ ( t ) = [ 0 , 0 , 2 , 6 t , 12 t 2 , ⋯   , n ( n − 1 ) t n − 2 ] ⋅ p j e r k ( t ) = p ( 3 ) ( t ) = [ 0 , 0 , 0 , 6 , 24 t , ⋯   , n ! ( n − 3 ) ! t n − 3 ] ⋅ p s n a p ( t ) = p ( 4 ) ( t ) = [ 0 , 0 , 0 , 0 , 24 , ⋯   , n ! ( n − 4 ) ! t n − 4 ] ⋅ p \begin{aligned} v(t) &= p^\prime(t) = [0,1,2t,3t^2,4t^3,\cdots,nt^{n-1}]\cdot p\\ a(t) &= p^{\prime \prime}(t) = [0,0,2,6t,12t^2,\cdots,n(n-1)t^{n-2}]\cdot p\\ jerk(t) &= p^{(3)}(t) = [0,0,0,6,24t,\cdots,\frac{n!}{(n-3)!}t^{n-3}]\cdot p\\ snap(t) &= p^{(4)}(t) = [0,0,0,0,24,\cdots,\frac{n!}{(n-4)!}t^{n-4}]\cdot p\\ \end{aligned} v(t)a(t)jerk(t)snap(t)=p(t)=[0,1,2t,3t2,4t3,,ntn1]p=p(t)=[0,0,2,6t,12t2,,n(n1)tn2]p=p(3)(t)=[0,0,0,6,24t,,(n3)!n!tn3]p=p(4)(t)=[0,0,0,0,24,,(n4)!n!tn4]p
一个多项式曲线过于简单,一段复杂的轨迹很难用一个多项式表示,所以将轨迹按时间分成多段,每段各用一条多项式曲线表示,形如:
p ( t ) = { [ 1 , t , t 2 , ⋯   , t n ] ⋅ p 1 t 0 ⩽ t < t 1 [ 1 , t , t 2 , ⋯   , t n ] ⋅ p 2 t 1 ⩽ t < t 2 ⋯ [ 1 , t , t 2 , ⋯   , t n ] ⋅ p k t k − 1 ⩽ t < t k \begin{aligned} p(t) = \begin{cases} [1,t,t^2,\cdots,t^n]\cdot p_1\quad t_0 \leqslant t<t_1\\ [1,t,t^2,\cdots,t^n]\cdot p_2\quad t_1 \leqslant t<t_2\\ \cdots \\ [1,t,t^2,\cdots,t^n]\cdot p_k\quad t_{k-1} \leqslant t<t_k\\ \end{cases} \end{aligned} p(t)=[1,t,t2,,tn]p1t0t<t1[1,t,t2,,tn]p2t1t<t2[1,t,t2,,tn]pktk1t<tk
k k k为轨迹的段数, p i = [ p i 0 , p i 1 , ⋯   , p i n ] T p_i=[p_{i0},p_{i1},\cdots,p_{in}]^T pi=[pi0,pi1,,pin]T为第 i i i段轨迹的参数向量。

此外,实际问题中的轨迹往往是二维、三维甚至更高维,通常每个维度单独求解轨迹。

3.Minimum Snap轨迹规划

轨迹规划的目的:求轨迹的多项式参数 p 1 , ⋯   , p k p_1,\cdots,p_k p1,,pk
我们可能希望轨迹满足一系列的约束条件,比如:希望设定起点和终点的位置、速度或加速度,希望相邻轨迹连接处平滑(位置连续、速度连续等),希望轨迹经过某些路径点,设定最大速度、最大加速度等,甚至是希望轨迹在规定空间内(corridor)等等。
通常满足约束条件的轨迹有无数条,而实际问题中,往往需要一条特定的轨迹,所以又需要构建一个最优的函数,在可行的轨迹中找出“最优”的那条特定的轨迹。
所以,我们将问题建模(fomulate)成一个约束优化问题,形如:
m i n f ( p ) s . t . A e q p = b e q A i e q p ⩽ b i e q \begin{aligned} min&\quad f(p)\\ s.t. & \quad A_{eq}p=b_{eq}\\ & \quad A_{ieq}p \leqslant b_{ieq} \end{aligned} mins.t.f(p)Aeqp=beqAieqpbieq

这样,就可以通过最优化的方法求解出目标轨迹参数 p p p。注意:这里的轨迹参数 p p p是多端polynomial组成的大参数向量 p = [ p 1 T , p 2 T , . . . , p k T ] T p=[p^T_1,p^T_2,...,p^T_k]^T p=[p1T,p2T,...,pkT]T
我们要做的就是: 将优化问题中的 f ( p ) f(p) f(p)函数和 A e q , b e q , A i e q , b i e q A_{eq},b_{eq},A_{ieq},b_{ieq} Aeq,beq,Aieq,bieq参数给列出来,然后丢到优化器中求解轨迹参数 p p p
Minimum Snap顾名思义,Minimum Snap中的最小化目标函数是Snap(加加加速度),当然你也可以最小化Acceleration(加速度)或者Jerk(加加速度),至于它们之间有什么区别,quora上有讨论。一般不会最小化速度。
m i n i m u m s n a p : min ⁡ f ( p ) = min ⁡ ( p ( 4 ) ( t ) ) 2 m i n i m u m j e r k : min ⁡ f ( p ) = min ⁡ ( p ( 3 ) ( t ) ) 2 m i n i m u m a c c e : min ⁡ f ( p ) = min ⁡ ( p ( 2 ) ( t ) ) 2 \begin{aligned} minimum snap: &\min f(p)=\min (p^{(4)}(t))^2 \\ minimum jerk: &\min f(p)=\min(p^{(3)}(t))^2\\ minimum acce: &\min f(p)=\min(p^{(2)}(t))^2 \end{aligned} minimumsnap:minimumjerk:minimumacce:minf(p)=min(p(4)(t))2minf(p)=min(p(3)(t))2minf(p)=min(p(2)(t))2

4. 一个简单的例子

给定包含起点终点在内的k+1个二维路径点 p t 0 , p t 1 , . . . , p t k , p t i = ( x i , y i ) pt_0,pt_1,...,pt_k,pt_i=(x_i,y_i) pt0,pt1,...,ptkpti=(xi,yi),给定起始速度和加速度为 v 0 , a 0 v_0,a_0 v0,a0,末端加速度为 v e , a e v_e,a_e ve,ae,给定时间T,规划出经过所有路径点的平滑轨迹。

a. 初始轨迹分段与时间分配

根据路径点,将轨迹分为k段,计算每段的距离,按距离平分时间T(匀速时间分配),得到时间序列 t 0 , t 1 , . . . , t k t_0,t_1,...,t_k t0,t1,...,tk。对x,y维度单独规划轨迹。后面只讨论一个维度。
时间分配的方法:匀速分配或梯形分配,假设每段polynomial内速度满足匀速或梯形速度变化,根据每段的距离将总时间T分配到每段。
这里的轨迹分段和时间分配都是初始分配,在迭代算法中,如果corridor check和feasibility check不满足条件,会插点或增大某一段的时间,这个后续细说。

b.构建优化函数

Minimum Snap的优化函数为:
J = min ⁡ ∫ 0 T ( p ( 4 ) ( t ) ) 2 d t = min ⁡ ∑ i = 1 k ∫ t i − 1 t i ( p ( 4 ) ( t ) ) 2 d t = min ⁡ ∑ i = 1 k ∫ t i − 1 t i ( [ 0 , 0 , 0 , 0 , 24 , . . . , n ! ( n − 4 ) ! t n − 4 ] ⋅ p ) T [ 0 , 0 , 0 , 0 , 24 , . . . , n ! ( n − 4 ) ! t n − 4 ] ⋅ p d t = min ⁡ ∑ i = 1 k p T ∫ t i − 1 t i [ 0 , 0 , 0 , 0 , 24 , . . . , n ! ( n − 4 ) ! t n − 4 ] T [ 0 , 0 , 0 , 0 , 24 , . . . , n ! ( n − 4 ) ! t n − 4 ] d t p = min ⁡ ∑ i = 1 k p i T Q i p i \begin{aligned} J =&\min \int^T_0(p^{(4)}(t))^2dt=\min\sum_{i=1}^k \int^{t_i}_{t_{i−1}}(p^{(4)}(t))^2dt\\ &=\min\sum_{i=1}^k\int^{t_i}_{t_{i−1}}([0,0,0,0,24,...,\frac{n!}{(n−4)!}t^{n−4}]⋅p)^T[0,0,0,0,24,...,\frac{n!}{(n−4)!}t^{n−4}]⋅p dt\\ &=\min\sum_{i=1}^kp^T\int^{t_i}_{t_{i−1}}[0,0,0,0,24,...,\frac{n!}{(n−4)!}t^{n−4}]^T[0,0,0,0,24,...,\frac{n!}{(n−4)!}t^{n−4}] dt p\\ &=\min\sum_{i=1}^kp_i^TQ_ip_i \end{aligned} J=min0T(p(4)(t))2dt=mini=1kti1ti(p(4)(t))2dt=mini=1kti1ti([0,0,0,0,24,...,(n4)!n!tn4]p)T[0,0,0,0,24,...,(n4)!n!tn4]pdt=mini=1kpTti1ti[0,0,0,0,24,...,(n4)!n!tn4]T[0,0,0,0,24,...,(n4)!n!tn4]dtp=mini=1kpiTQipi
其中,
Q i = ∫ t i − 1 t i [ 0 , 0 , 0 , 0 , 24 , . . . , n ! ( n − 4 ) ! t n − 4 ] T [ 0 , 0 , 0 , 0 , 24 , . . . , n ! ( n − 4 ) ! t n − 4 ] d t = [ 0 4 × 4 0 4 × ( n − 3 ) 0 ( n − 3 ) × 4 r ! ( r − 4 ) ! c ! ( c − 4 ) ! 1 ( r − 4 ) + ( c − 4 ) + 1 ( t i ( r + c − 7 ) − t i − 1 ( r + c − 7 ) ) ] \begin{aligned} Q_i&=\int^{t_i}_{t_{i−1}}[0,0,0,0,24,...,\frac{n!}{(n−4)!}t^{n−4}]^T[0,0,0,0,24,...,\frac{n!}{(n−4)!}t^{n−4}] dt \\ &=\begin{bmatrix}0_{4\times4}&0_{4\times (n−3)}\\ 0_{(n−3)\times 4}&\frac{r!}{(r−4)!}\frac{c!}{(c−4)!} \frac{1}{(r−4)+(c−4)+1}(t^{(r+c−7)}_i−t^{(r+c−7)}_{i−1})\end{bmatrix} \end{aligned} Qi=ti1ti[0,0,0,0,24,...,(n4)!n!tn4]T[0,0,0,0,24,...,(n4)!n!tn4]dt=[04×40(n3)×404×(n3)(r4)!r!(c4)!c!(r4)+(c4)+11(ti(r+c7)ti1(r+c7))]
注意:r,c为矩阵的行索引和列索引, 索引从0开始,即第一行r=0。
Q = [ Q 1 Q 2 ⋱ Q k ] Q = \begin{bmatrix} Q_1 &&& \\ &Q_2 && \\ && \ddots &\\ &&& Q_k\end{bmatrix} Q=Q1Q2Qk
目标函数
min ⁡ p T Q p \min p^TQp minpTQp
可以看到,问题建模成了一个数学上的二次规划(Quadratic Programming,QP)问题。

c. 构建等式约束方程
  • 设定某一个点的位置、速度、加速度或者更高为一个特定的值,可以构成一个等式约束。例如:
    位 置 约 束 : [ 1 , t 0 , t 0 2 , . . . , t 0 n , 0...0 ⏟ ( k − 1 ) ( n + 1 ) ] p = p 0 速 度 约 束 : [ 0 , 1 , 2 t 0 , . . . , n t 0 n − 1 , 0...0 ⏟ ( k − 1 ) ( n + 1 ) ] p = v 0 加 速 度 约 束 : [ 0 , 0 , 2 , . . . , n ( n − 1 ) t 0 n − 2 , 0...0 ⏟ ( k − 1 ) ( n + 1 ) ] p = a 0 \begin{aligned} 位置约束:[1,t_0,t^2_0,...,t^n_0,\underbrace{0...0}_{(k−1)(n+1)}]p=p_0 \\ 速度约束:[0,1,2t_0,...,nt^{n−1}_0,\underbrace{0...0}_{(k−1)(n+1)}]p=v_0\\ 加速度约束:[0,0,2,...,n(n−1)t^{n−2}_0,\underbrace{0...0}_{(k−1)(n+1)}]p=a_0\\ \end{aligned} [1,t0,t02,...,t0n,(k1)(n+1) 0...0]p=p0[0,1,2t0,...,nt0n1,(k1)(n+1) 0...0]p=v0[0,0,2,...,n(n1)t0n2,(k1)(n+1) 0...0]p=a0
    由于要过中间点,对中间点的位置也构建等式约束,方法同上。
  • 相邻段之间的位置、速度、加速度连续可以构成一个等式约束,例如第i、i+1段的位置连续构成的等式约束为
    [ 0...0 ⏟ ( i − 1 ) ( n + 1 ) , 1 , t i , t i 2 , . . . , t i n , − 1 , − t i , − t i 2 , . . . , − t i n , 0...0 ⏟ ( k − i − 1 ) ( n + 1 ) ] p = 0 [\underbrace{0...0}_{(i−1)(n+1)},1,t_i,t^2_i,...,t^n_i,−1,−t_i,−t^2_i,...,−t^n_i,\underbrace{0...0}_{(k−i−1)(n+1)}]p=0 [(i1)(n+1) 0...0,1,ti,ti2,...,tin,1,ti,ti2,...,tin,(ki1)(n+1) 0...0]p=0
    速度、加速度连续类似,不再罗列。
    合并所有等式约束,得到
    [ 1 , t 0 , t 0 2 , . . . , t 0 n , 0...0 ⏟ ( k − 1 ) ( n + 1 ) 0 , 1 , 2 t 0 , . . . , n t 0 n − 1 , 0...0 ⏟ ( k − 1 ) ( n + 1 ) 0 , 0 , 2 , . . . , n ( n − 1 ) t 0 n − 2 , 0...0 ⏟ ( k − 1 ) ( n + 1 ) ⋮ 0...0 ⏟ ( i − 1 ) ( n + 1 ) , 1 , t i , t i 2 , . . . , t i n , 0...0 ⏟ ( k − i ) ( n + 1 ) ⋮ 0...0 ⏟ ( k − 1 ) ( n + 1 ) , 1 , t k , t k 2 , . . . , t k n 0...0 ⏟ ( k − 1 ) ( n + 1 ) , 0 , 1 , 2 t k , . . . , n t k n − 1 0...0 ⏟ ( k − 1 ) ( n + 1 ) , 0 , 0 , 2 , . . . , n ( n − 1 ) t k n − 2 0...0 ⏟ ( i − 1 ) ( n + 1 ) , 1 , t i , t i 2 , . . . , t i n , − 1 , − t i , − t i 2 , . . . , − t i n , 0...0 ⏟ ( k − i − 1 ) ( n + 1 ) 0...0 ⏟ ( i − 1 ) ( n + 1 ) , 0 , 1 , 2 t i , . . . , n t i n − 1 , − 0 , − 1 , − 2 t i , . . . , − n t i n − 1 , 0...0 ⏟ ( k − i − 1 ) ( n + 1 ) 0...0 ⏟ ( i − 1 ) ( n + 1 ) , 0 , 0 , 2 , . . . , n ! ( n − 2 ) ! t i n − 2 , − 0 , − 0 , − 2 , . . . , − n ! ( n − 2 ) ! t i n − 2 , 0...0 ⏟ ( k − i − 1 ) ( n + 1 ) ] ( 4 k + 2 ) × ( n + 1 ) k = [ p 0 v 0 a 0 ⋮ p i ⋮ p k v k a k 0 ⋮ 0 ] \begin{bmatrix} 1,t_0,t^2_0,...,t^n_0,\underbrace{0...0}_{(k−1)(n+1)}\\ 0,1,2t_0,...,nt^{n−1}_0,\underbrace{0...0}_{(k−1)(n+1)}\\ 0,0,2,...,n(n−1)t^{n−2}_0,\underbrace{0...0}_{(k−1)(n+1)}\\ \vdots\\ \underbrace{0...0}_{(i−1)(n+1)},1,t_i,t^2_i,...,t^n_i,\underbrace{0...0}_{(k−i)(n+1)} \\ \vdots \\ \underbrace{0...0}_{(k−1)(n+1)},1,t_k,t^2_k,...,t^n_k\\ \underbrace{0...0}_{(k−1)(n+1)},0,1,2t_k,...,nt^{n−1}_k\\ \underbrace{0...0}_{(k−1)(n+1)},0,0,2,...,n(n−1)t^{n−2}_k\\ \underbrace{0...0}_{(i−1)(n+1)},1,t_i,t^2_i,...,t^n_i,−1,−t_i,−t^2_i,...,−t^n_i,\underbrace{0...0}_{(k−i−1)(n+1)} \\ \underbrace{0...0}_{(i−1)(n+1)},0,1,2t_i,...,nt^{n−1}_i,−0,−1,−2t_i,...,−nt^{n−1}_i,\underbrace{0...0}_{(k−i−1)(n+1)}\\ \underbrace{0...0}_{(i−1)(n+1)},0,0,2,...,\frac{n!}{(n−2)!}t^{n−2}_i,−0,−0,−2,...,−\frac{n!}{(n−2)!}t^{n−2}_i,\underbrace{0...0}_{(k−i−1)(n+1)} \end{bmatrix}_{(4k+2)\times(n+1)k} = \begin{bmatrix}p_0\\v_0\\a_0\\\vdots\\p_i\\\vdots\\p_k\\v_k\\a_k\\0\\\vdots\\0\end{bmatrix} 1,t0,t02,...,t0n,(k1)(n+1) 0...00,1,2t0,...,nt0n1,(k1)(n+1) 0...00,0,2,...,n(n1)t0n2,(k1)(n+1) 0...0(i1)(n+1) 0...0,1,ti,ti2,...,tin,(ki)(n+1) 0...0(k1)(n+1) 0...0,1,tk,tk2,...,tkn(k1)(n+1) 0...0,0,1,2tk,...,ntkn1(k1)(n+1) 0...0,0,0,2,...,n(n1)tkn2(i1)(n+1) 0...0,1,ti,ti2,...,tin,1,ti,ti2,...,tin,(ki1)(n+1) 0...0(i1)(n+1) 0...0,0,1,2ti,...,ntin1,0,1,2ti,...,ntin1,(ki1)(n+1) 0...0(i1)(n+1) 0...0,0,0,2,...,(n2)!n!tin2,0,0,2,...,(n2)!n!tin2,(ki1)(n+1) 0...0(4k+2)×(n+1)k=p0v0a0pipkvkak00

等式约束个数=3(起始PVA)+k-1(中间点的p)+3(终点pva)+3(k-1)(中间点PVA连续)=4k+2

d. 构建不等式约束

不等式约束与等式约束类似,也是设置某个点的P、V、A小于某一特定值,从而构建 A i e q p = b i e q A_{ieq}p=b_{ieq} Aieqp=bieq,不等式约束一般是在corridor中用的比较多,这里暂时先不使用不等式约束。

e. 求解

利用QP求解器进行求解,在MATLAB中可以使用quadprog() 函数,C++的QP求解器如OOQP,也可以自己去网上找。

优化列表:

min:snap
等式约束:起点pva,终点pva,中间点的p,中间点pva连续
不等式约束:无

生成x、y两个维度的轨迹,合并后如下图所示。包含起始终止共5个点,用四段poly来描述,中间点也就是poly之间的交界点。

5.轨迹怎么用?(轨迹跟踪)

至此,我们已经求得了轨迹(很多段高阶多项式的参数),但怎么用来控制机器人运动呢?轨迹跟踪是:根据轨迹和机器人当前状态(当前位置、速度、加速度),输出机器人控制指令(速度、加速度、角速度等),控制机器人沿着轨迹运动。有很多种跟踪方法

  • 最简单的跟踪方法是位置控制:计算轨迹上离当前位置最近的点,以最近点为期望位置做位置控制,即 v = k p ( p n e a r e s t − p c u r ) v=k_p(p_{nearest}−p_{cur}) v=kp(pnearestpcur)
  • Minimum Snap中的前馈控制:计算轨迹上离最近点的(位置 p e p_e pe、速度 v e v_e ve、加速度 a e a_e ae),
    速 度 指 令 : v = v e 加 速 度 前 馈 : a = a e + k p ( p e − p c u r ) + k d ( v e − v c u r ) \begin{aligned} 速度指令:&v=ve\\ 加速度前馈:&a=a_e+k_p(p_e−p_{cur})+k_d(v_e−v_{cur}) \end{aligned} v=vea=ae+kp(pepcur)+kd(vevcur)

6. 小结

  • 轨迹规划问题通常建模成一个带约束的二次规划(QP)问题来求解,优化函数可以是snap、jerk、acceleration及它们的组合或其他任何能够formulate成 p T Q p p^TQp pTQp形式的函数,约束包括等式约束和不等式约束。
  • 轨迹规划中默认时间t已知,通常根据期望速度和总路程计算一个总时间T,再按照匀速运动和梯形速度曲线分配到每段polynomial上。
  • 上面例子中规划出的轨迹并不是很好,有以下问题:
    • a) 轨迹与路径相差有点大,而且在第三个waypoint处会有打结的现象;
    • b) y轴的加速度非常大(接近 20 m / s 2 20m/s^2 20m/s2),超过了机器人的最大加速度。实际轨迹需要进行feasibility check(可行性检测),确保满足工程可行性,比如最大速度、最大角速度限制等。
  • 这两个问题的根本原因在于时间给的不合理,时间分配是轨迹规划中比较蛋疼的问题,给的时间太小,速度、加速度自然就很大,两段时间分配不当就会生成打结的轨迹。下一节,专门讨论时间分配问题。

参考文献

  • Richter C, Bry A, Roy N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments[M]//Robotics Research. Springer International Publishing, 2016: 649-666.
  • Vijay Kumar的一系列论文:Mellinger D, Kumar V. Minimum snap trajectory generation and control for quadrotors[C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011: 2520-2525.
  • 2
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值