mask-rcnn解析(一)

mask-rcnn

Mask RCNN沿用了Faster RCNN的思想,特征提取采用ResNet-FPN的架构,另外多加了一个Mask预测分支,ResNet-FPN+Fast RCNN+Mask,实际上就是Mask RCNN。
Faster RCNN本身的细节非常多。如果对Faster RCNN算法不熟悉,想了解更多的可以看这篇文章:一文读懂Faster RCNN,这是我看过的解释得最清晰的文章。

一、mask-rcnn整体结构图

结合物体检测和图像分割为一体的网络结构
在这里插入图片描述

二、ResNet-FPN特征提取

详细结构图如下
在这里插入图片描述
M 经过 3*3卷积核生成 channel 256 的特征图
生成特征图【p2,p3,p4,p5,p6】
那各个特征图对应到原图的步长依次为[P2,P3,P4,P5,P6]=>[4,8,16,32,64]
将P5进行步长为2的最大池化操作得到:16 * 16 * 256,记为P6

三、anchor的生成

mask-rcnn解析(二

四、rpn网络

4.1生成rpn网络数据集

在上一步已经生成了26188个Anchor锚框,需要借助这些Anchors建立RPN网络训练时的正类和负类

  1. 计算每个Anchors与该图片上标注的真实框ground truth之间的IOU
  • 如果anchor box与ground truth的IoU值最大,标记为正样本,label=1

  • 如果anchor box与ground truth的IoU>0.7,标记为正样本,label=1

  • 如果anchor box与ground truth的IoU<0.3,标记为负样本,label=-1

  • 剩下的既不是正样本也不是负样本,不用于最终训练,label=0

  • 同时,保证正样本为128个,负样本为128个

2.计算anchor box与ground truth之间的偏移量

4.2 rpn训练

该部分主要根据上面的到的特征图rpn_feature_maps=[P2,P3,P4,P5,P6]生成以下数据:

rpn_class_logits:[batch_size,H * W * anchors_per_location,2] anchors分类器logits(在softmax之前)
rpn_probs:[batch_size,H * W * anchors_per_location,2] anchors分类器概率。
rpn_bbox:[batch_size,H * W * anchors_per_location,(dy,dx,log(dh),log(dw))] anchors的坐标偏移量

五、ProposalLayer

ProposalLayer的作用主要:
这一部分对应着总网络图中的ProposalLayer层,取出一定量的Anchors作为ROI,这个量由源码中参数POST_NMS_ROIS_TRAINING确定,假设这个参数在训练的时候设置为2000,则我们这里需要从261888个Anchors中取出2000个作为ROI

  1. 将rpn网路的输出应用到得到的anchors,首先对输出的概率进行排序(概率就是上一步得到的rpn_probs表示正样本和负样本的置信度),获取score靠前的前6000个anchor
  2. 利用rpn_bbox对anchors进行修正
  3. 舍弃掉修正后边框超过图片大小的anchor,由于我们的anchor的坐标的大小是归一化的,只要坐标不超过0 1区间即可
  4. 利用非极大抑制的方法获得最后的2000个anchor

六、DetectionTargetLayer

这一部分主要是生成RCNN网络数据集,最后DetectionTargetLayer层返回400个正、负样本,400个位移偏移量(其中300个由0填充),400个掩码mask信息(其中300个由0填充)

在这里插入图片描述

七、ROI Align 和RCNN网络的类别分类、回归、mask掩码分类

在这里插入图片描述
ROI Align 是在Mask-RCNN这篇论文里提出的一种区域特征聚集方式, 很好地解决了ROI Pooling操作中两次量化造成的区域不匹配(mis-alignment)的问题。

①RCNN网络的类别分类和回归与RPN网络中的分类和回归是一样的,损失函数也都是基于Softmax交叉熵和SmoothL1Loss,只是RPN网络中只分前景(正类)、背景(负类),而RCNN网络中的分类是要具体到某个类别(多类别分类)

②mask掩码分类

### Mask R-CNN 网络架构图解析 #### 架构概述 Mask R-CNN 是种基于 Faster R-CNN 的改进版本,在原有框架的基础上增加了用于实例分割的任务分支。整个网络由共享的卷积层、区域提议网络 (RPN),以及两个并行处理模块组成:个是负责边界框回归和类别分类;另个则是专门用来生成目标物体的二值掩码[^1]。 #### 主要组件说明 - **共享卷积特征提取** 输入图像经过系列卷基层运算后被转换成高维空间中的稠密表示形式——即所谓的“特征映射”。这部分通常采用预先训练好的深度学习模型作为骨干网,比如 ResNet 或者 VGG16 等,以便更好地捕捉不同尺度下的视觉模式[^2]。 - **Region Proposal Network (RPN)** 基于上述获得的高层次语义信息,RPN 能够高效地筛选出可能含有感兴趣对象的位置候选区(称为 Region of Interest, ROI)。这些 ROIs 将进步传递给后续阶段做更精细的操作。 - **RoI Align 层** 针对每个建议窗口,利用 RoIAlign 技术代替传统的 RoIPooling 来获取固定大小的空间布局不变量。此方法能够有效减少量化误差带来的负面影响,从而提高最终输出质量。 - **全连接层/FCN 支持的目标检测与分类** 对应于每个选定出来的兴趣域,分别执行两组独立却相互关联的工作流程: - 使用若干个完全连通单元构成的小型神经子网来进行位置微调; - 同时启动另条路径上的全卷积操作以估计对应类别的概率分布情况[^3]。 - **全卷积网络支持的对象遮罩预测** 此外还存在条专属于创建逐像素级标签映射表的通道,它同样依赖于 FCNs 实现从输入图片到输出 binary masks 的端到端映射关系构建过程。对于任意指定尺寸 m×m 的矩形区域内,均可依据其内部各点所属状态给出精确描述。 ```mermaid graph TB; A[Input Image] --> B{Shared Conv Layers}; B --> C[RPN]; C --> D{Selected RoIs}]; D --> E[RoI Align Layer]; E --> F[Two Fully Connected Heads]; E --> G[Fully Convolutional Head for Masks]; F --> H[Bounding Box Regression & Classification]; G --> I[m × m Binary Masks Prediction]; H --> J[Output Detection Results]; I --> K[Instance Segmentation Output]; J --> L[Merged Outputs with Instance Segmentations]; K --> L; L[Final Output] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值