彩票中的数学知识(一)

最近学习彩票的一些知识,也阅读和查看了国外的很多彩票案例,其实彩票规则设计缺陷所导致的漏洞是大众最容易赚钱的方式之一,今天就来介绍其中的一种。

2005年美国的一个彩票品种出现了漏洞,随后被麻省理工的学生发现,在之后的七年时间里这个学生反复购买这个品种,一共赚了300万美元。

本文案例来自斯坦福大学数学教授Jordan Ellenberg的大学演讲。

一、期望值

彩票最重要的数学概念,叫做"期望值"(expected value),即同一种行为多次重复以后,所能得到的平均收益。

举例来说,如果每次抽奖需要2元,假设200次抽奖可以中奖一次,奖金为300元。那么,你花了2000元,一共抽奖1000次,中奖了5次,奖金为1500元。

也就是说,1000次抽奖的总收益是1500元,每次的平均收益是1.5元,这就是期望值。它的计算公式如下。

期望值= 300 * (1 / 200) + 0 * (199 / 200) = 1.5

期望值是1.5元,但是每次抽奖成本2元,于是净亏损0.5元。

一看就知道,这个事情是不划算的,做得越多,越不划算。偶尔买一次彩票,倒也算了;如果你常年累月一直买彩票,就肯定会亏不少的钱(上面例子是每200次亏100元)。

总之,期望值是衡量彩票收益的一个关键指标。

二、马萨褚塞洲的WinFall彩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值