tf.reduce_mean()与np.mean()的区别

本文通过实验对比了TensorFlow中的tf.reduce_mean与NumPy中的np.mean函数。两者均可计算平均值,但在数据类型处理上有所不同。np.mean默认输出为float64,而tf.reduce_mean则依据输入数据类型进行推断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考网站:https://stackoverflow.com/questions/34236252/what-is-the-difference-between-np-mean-and-tf-reduce-mean
tf.reduce_mean()与np.mean()实现的计算是一样的,但是相互的区别,通过以下实验可知:

# tensorflow.__version__=='1.15.4'
import tensorflow as tf
import numpy as np

###########################a
print('a:')
a = np.array([[3.,4], [5.,6], [6.,7]])
print(np.mean(a,1))

Meana = tf.reduce_mean(a,1)
with tf.Session() as sess:
    resulta = sess.run(Meana)
    print(resulta)

###########################b
print('b:')
b = np.array([[3.,4], [5.,6], [6.,7]])
print(np.mean(b))

Meanb = tf.reduce_mean(b)
with tf.Session() as sess:
    resultb = sess.run(Meanb)
    print(resultb)

###########################c
print('c:')
c = np.array([[3,4], [5,6], [6,7]])
print(np.mean(c))
print('the int output:',np.mean(c,dtype=np.int))
Meanc = tf.reduce_mean(c)
with tf.Session() as sess:
    resultc = sess.run(Meanc)
    print(resultc)
a:
[3.5 5.5 6.5]
[3.5 5.5 6.5]
b:
5.166666666666667
5.166666666666667
c:
5.166666666666667
the int output: 5
5

例a:实验axis的设置在求mean当中相同
例b:实验默认axis在求mean当中相同
例c:值没有小数点表示为int型,所以tf.reduce_mean结果不同
通过查看tf.reduce_mean的文档可知:
在这里插入图片描述
在这里插入图片描述
在np.mean当中默认的输出数值类型dtype是float64,所以输入是int型时,输出不受影响。

在tf.reduce_mean当中,输出数值类型来自对输入数值的推断,如实验c当中所示,tf.reduce_mean通过推断得出输入数值类型为int型,所以输出类型也为int型。

在使用深度学习当中计算损失值的时候,由于输入数值的问题可能造成模型的生成失败。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值