空间几何-向量在另外一个向量上的投影计算

   u ⃗ \vec{u} u 向量在 v ⃗ \vec{v} v 向量上的投影分量 u x ⃗ \vec{u_{x}} ux 的计算,其实就是 u ⃗ \vec{u} u 的模乘以 u ⃗ \vec{u} u v ⃗ \vec{v} v 的夹角的cos值,然后再乘 v ⃗ \vec{v} v 的单位向量( v ⃗ \vec{v} v 可以不是单位向量,不是单位向量就需要换算为单位向量);
  简化 u ⃗ \vec{u} u 向量在 v ⃗ \vec{v} v 向量上的投影计算,就是 u ⃗ \vec{u} u 向量在单位向量 v ⃗ \vec{v} v 上的投影计算。
在这里插入图片描述
  以上图为例,计算 u ⃗ \vec{u} u 向量在 v ⃗ \vec{v} v 向量上的投影:
  具体公式如下:
u x ⃗ = ∣ u ⃗ ∣ ∗ c o s θ ∗ v ⃗ = ∣ u ⃗ ∣ ∗ ∣ v ⃗ ∣ ∗ c o s θ ∗ v ⃗ \vec{u_{x}}=\left | \vec{u} \right |*cos\theta* \vec{v}= \left | \vec{u} \right |*\left | \vec{v} \right |*cos\theta* \vec{v} ux =u cosθv =u v cosθv
  得到了 u x ⃗ = ∣ u ⃗ ∣ ∗ ∣ v ⃗ ∣ ∗ c o s θ ∗ v ⃗ \vec{u_{x}}=\left | \vec{u} \right |*\left | \vec{v} \right |*cos\theta* \vec{v} ux =u v cosθv ,又因为 u ⃗ ⋅ v ⃗ = ∣ u ⃗ ∣ ∗ ∣ v ⃗ ∣ ∗ c o s θ \vec{u}\cdot \vec{v}=\left | \vec{u} \right |*\left | \vec{v} \right |*cos\theta u v =u v cosθ,则可以得到:
u x ⃗ = u ⃗ ⋅ v ⃗ ∗ v ⃗ \vec{u_{x}}=\vec{u}\cdot \vec{v}*\vec{v} ux =u v v
  所以 u ⃗ \vec{u} u 向量在单位向量 v ⃗ \vec{v} v 的投影,是 u ⃗ \vec{u} u 点乘 v ⃗ \vec{v} v 乘以 v ⃗ \vec{v} v
  注意:点乘和乘以的区别;
  注意如果 v ⃗ \vec{v} v 不是单位向量就需要计算得到单位向量,再代入上一公式计算:
e ⃗ = v ⃗ ∣ v ⃗ ∣ \vec{e} = \frac{\vec{v}}{\left | \vec{v} \right |} e =v v
   u ⃗ \vec{u} u 向量在 v ⃗ \vec{v} v 方向上的模的分量为:
∣ u v ⃗ ∣ = ∣ u ⃗ ∣ ∗ c o s θ = ∣ u ⃗ ∣ ∗ ∣ v ⃗ ∣ ∗ c o s θ = u ⃗ ⋅ v ⃗ \left | \vec{u_{v}} \right |= \left | \vec{u} \right |*cos\theta = \left | \vec{u} \right |*\left | \vec{v} \right |*cos\theta = \vec{u}\cdot \vec{v} uv =u cosθ=u v cosθ=u v

  • 12
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 要计算一个点在空间三角形上的投影,可以使用以下公式: 1. 计算三角形法线向量 N。 2. 找出点到三角形上任意一点的向量 P。 3. 计算 P 在 N 方向上的投影向量 P'. 4. 用三角形上任意一点与 P' 的距离作为投影的长度。 以上是计算投影的方法,您还有其他问题需要我回答吗? ### 回答2: 点向空间三角形上的投影是指将点在垂直于三角形所在平面上的投影。即将点沿着垂直于三角形所在平面的方向,投影到该平面上的点。 要计算点在三角形上的投影,可以使用投影矩阵来实现。首先,需要确定三角形所在平面的法向量一个位于该平面上的点。然后,可以通过将点与该平面上的点相连,得到一条垂直于平面的线。接下来,将该线与平面相交,得到点在平面上的投影点。 具体计算方法如下: 1. 计算三角形所在平面的法向量,可以通过计算两个三角形边的叉乘来得到。 2. 选择一个位于三角形上的点,可以选择三角形的其中一个顶点作为参考点。 3. 将点与参考点相连,得到一条向量。 4. 将该向量与平面的法向量求点积。点积的结果可以代表投影线与法向量之间的夹角的余弦值。 5. 将投影线的向量乘以“夹角余弦值”,得到投影向量。 6. 将投影向量与参考点相加,得到点在平面上的投影点。 通过以上计算步骤,就可以得到点在空间三角形上的投影点。这个投影点位于三角形所在平面上,并且与原始点在视觉上是最接近的点。 ### 回答3: 点向空间三角形上的投影是指将一个点在三维空间中垂直投影一个三角形所在的平面上的过程。投影点是将点沿着垂直于该平面的方向下落,直到与平面相交。投影点的坐标是相对于该平面上的坐标。 在投影过程中,首先需要确定三角形所在的平面的方程或法向量。然后,根据该平面的法向量和点到平面的距离,可以确定投影点在平面上的坐标。点到平面的距离可以通过点到平面的距离公式来计算。 点到平面的距离公式为: distance = |Ax + By + Cz + D| / sqrt(A^2 + B^2 + C^2) 其中(A, B, C)为平面的法向量,(x, y, z)为点的坐标,D为平面方程中的常量。 确定了投影点在平面上的坐标后,就可以得到点在空间三角形上的投影投影点的坐标与原来点的坐标相比,可能会发生变化,因为投影点可能与原来的点不在同一条直线上。 点向空间三角形上的投影计算机图形学、计算机视觉、几何学等领域中具有广泛的应用。通过点的投影,可以增强对空间三角形的理解和分析,为实际问题的解决提供有力的支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑山老妖的笔记本

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值