0 正则化的作用
正则化的主要作用是防止过拟合,对模型添加正则化项可以限制模型的复杂度,使得模型在复杂度和性能达到平衡。
常用的正则化方法有L1正则化和L2正则化。L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。 L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归。但是使用正则化来防止过拟合的原理是什么?L1和L2正则化有什么区别呢?
1 L1正则化与L2正则化
L1正则化的表达如下,其中 α ∣ ∣ w ∣ ∣ 1 \alpha||w||_1 α∣∣w∣∣1为L1正则化项,L1正则化是指权值向量w 中各个元素的绝对值之和。
L2正则化项表达式如下,其中 α ∣ ∣ w ∣ ∣ 2 2 \alpha||w||_2^2 α∣∣w∣∣22为L2正则化项,L2正则化是指权值向量w 中各个元素的平方和然后再求平方根。
L1和L2正则化的作用:
- L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择,一定程度上,L1也可以防止过拟合
- L2正则化可以防止模型过拟合(overfitting)
下面看李飞飞在CS2312中给的更为详细的解释:
- L2正则化可以直观理解为它对于大数值的权重向量进行严厉惩罚,倾向于更加分散的权重向量。由于输入和权重之间的乘法操作,这样就有了一个优良的特性:使网络更倾向于使用所有输入特征,而不是严重依赖输入特征中某些小部分特征。 L2惩罚倾向于更小更分散的权重向量,这就会鼓励分类器最终将所有维度上的特征都用起来,而不是强烈依赖其中少数几个维度。。这样做可以提高模型的泛化能力,降低过拟合的风险。
- L1正则化有一个有趣的性质,它会让权重向量在最优化的过程中变得稀疏(即非常接近0)。也就是说,使用L1正则化的神经元最后使用的是它们最重要的输入数据的稀疏子集,同时对于噪音输入则几乎是不变的了。相较L1正则化,L2正则化中的权重向量大多是分散的小数字。
- 在实践中,如果不是特别关注某些明确的特征选择,一般说来L2正则化都会比L1正则化效果好。
2 L1和L2正则化的原理
上面讲到L1倾向于学得稀疏的权重矩阵,L2倾向于学得更小更分散的权重?但是L1和L2是怎样起到这样的作用的呢?背后的数学原理是什么呢?
模型的学习优化的目标是最小化损失函数,学习的结果是模型参数。在原始目标函数的基础上添加正则化相当于,在参数原始的解空间添加了额外的约束。
L1正则化对解空间添加的约束是:
∑ ∣ ∣ w