微积分与逼近论-机器学习

一、微分学回顾

极限与导数
  • 极限
    ϵ − δ \epsilon-\delta ϵδ语言
  • 连续
  • 导数
    :定义
    :导数线性逼近
    :求导法则:链式,加法,乘法,除法
泰勒级数
  • 泰勒级数是微分学的巅峰或精髓
  • 应用:欧拉公式(泰勒级数证明)
  • 应用:洛必达法则
  • 应用:求解简单微分方程
    :用差分方程来逼近微分方程,用邻点函数的值来表示当前的导数
    向前差分,向后差分,中心差分,二阶中心差分
牛顿法与梯度下降法
  • 牛顿法:
    :零点问题
    :求极值:
    极值问题:一阶导数的零点问题
    函数的二次逼近
    梯度下降法
  • 都是对连续函数的局部逼近,梯度下降法是一阶逼近,牛顿法为二阶逼近,需要求海森矩阵

二、积分学回顾

黎曼积分
勒贝格积分与概率
  • 不从分割定义域入手,从分割值域入手

三、概率论简单回顾

两大基本定理
  • 大数定理
    :依概率收敛
    :依分布收敛
  • 中心极限定理
参数估计
  • 点估计
  • 矩估计
    1.矩是什么
    2.矩是什么
    能用低阶矩不用高阶矩
  • 极大似然估计
    评判标准:
    相合性
    无偏性
    有效性
    渐进正态性
  • 区间估计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值