一、微分学回顾
极限与导数
- 极限
: ϵ − δ \epsilon-\delta ϵ−δ语言 - 连续
- 导数
:定义
:导数线性逼近
:求导法则:链式,加法,乘法,除法
泰勒级数
- 泰勒级数是微分学的巅峰或精髓
- 应用:欧拉公式(泰勒级数证明)
- 应用:洛必达法则
- 应用:求解简单微分方程
:用差分方程来逼近微分方程,用邻点函数的值来表示当前的导数
向前差分,向后差分,中心差分,二阶中心差分
牛顿法与梯度下降法
- 牛顿法:
:零点问题
:求极值:
极值问题:一阶导数的零点问题
函数的二次逼近
梯度下降法 - 都是对连续函数的局部逼近,梯度下降法是一阶逼近,牛顿法为二阶逼近,需要求海森矩阵
二、积分学回顾
黎曼积分
勒贝格积分与概率
- 不从分割定义域入手,从分割值域入手
三、概率论简单回顾
两大基本定理
- 大数定理
:依概率收敛
:依分布收敛 - 中心极限定理