整理一下数值分析的笔记~
目录:1. 误差
2. 多项式插值与样条插值
3. 函数逼近
4. 数值积分与数值微分(THIS)
5. 线性方程组的直接解法
6. 线性方程组的迭代解法
7. 非线性方程求根
8. 特征值和特征向量的计算
9. 常微分方程初值问题的数值解
1.1 两点向前差分公式:
f ′ ( x ) = f ( x + h ) − f ( x ) h + ( − h 2 f ′ ′ ( c ) ) f'(x)=\frac{f(x+h)-f(x)}{h}+(-\frac{h}{2}f''(c)) f′(x)=hf(x+h)−f(x)+(−2hf′′(c)),后半部分是预测误差,需要求得该误差在给定区间上得一个范围
1.2 两点向后差分公式:
f ′ ( x ) = f ( x ) − f ( x − h ) h + ( h 2 f ′ ′ ( c ) ) f'(x)=\frac{f(x)-f(x-h)}{h}+(\frac{h}{2}f''(c)) f′(x)=hf(x)−f(x−h)+(2hf′′(c)),后半部分是预测误差,需要求得该误差在给定区间上得一个范围
1.3 三点中心差分公式:
f ′ ( x ) = f ( x + h ) − f ( x − h ) 2 h + ( − h 2 6 f ′ ′ ′ ( c ) ) f'(x)=\frac{f(x+h)-f(x-h)}{2h}+(-\frac{h^2}{6}f'''(c)) f′(x)=2hf(x+h)−f(x−h)+(−6h2f′′′(c))
最优步长 h = 3 3 ε M h=^3\sqrt{\frac{3\varepsilon}{M}} h=3M3ε
1.4 二阶导数三点中点差分公式:
f ′ ′ ( x ) = f ( x + h ) − 2 f ( x ) + f ( x − h ) h 2 + ( − h 2 12 f ( 4 ) ( c ) ) f''(x)=\frac{f(x+h)-2f(x)+f(x-h)}{h^2}+(-\frac{h^2}{12}f^{(4)}(c)) f′′(x)=h2f(x+h)−2f(x)+f(x−h)+(−12h2f(4)(c))
1.5 外推(理查德森外推)
理查德森外推就是将公式中得步长替换为原来得一半,得n阶外推公式:
Q ≈ 2 n F n ( h 2 ) − F n ( h ) 2 n − 1 = F n + 1 ( h ) Q \approx \frac{2^nF_n(\frac{h}{2})-F_n(h)}{2^n-1}=F_{n+1}(h) Q≈2n−12nFn(2h)−Fn(h)=Fn+1(h)
{持续更新}
欢迎扫描二维码关注微信公众号 深度学习与数学 [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]