【通信原理笔记】【一】确定信号分析——1.2 傅里叶变换的性质


前言

在这篇笔记中,首先会先承接上篇的尾巴介绍傅里叶变换的对偶性质,然后再通过介绍两个基本性质的推导方法,最后再介绍一些稍微复杂一些的性质,这些性质都能用相同的推导思路推导而来。

为了说明方便,在本系列笔记中,有以下默认写法:
1.在本系列笔记中当提到傅里叶变换对 x ( t ) → X ( f ) x(t)\rightarrow X(f) x(t)X(f)时,默认是对左侧的函数做傅里叶变换得到右侧的函数;
2.在本系列笔记中, a , b a,b a,b是时域-频域或频域-时域对。
3.将a域信号搬运到b域是指,时域图形 x ( t ) x(t) x(t)变成频域图形 x ( f ) x(f) x(f),或频域图形 X ( f ) X(f) X(f)变成时域图形 X ( t ) X(t) X(t)


一、傅里叶变换的对偶性

在上一篇的结尾处,我们提到傅里叶变换中的 f f f t t t的物理意义其实是通信工程师们自己赋予,而在原变换公式中其实符号的意义并不是固定不变的。因此,我们并不是只能对电信号 x ( t ) x(t) x(t)做傅里叶变换,而是也大可以对信号 x ( t ) x(t) x(t)做傅里叶反变换(避免混乱可以简单理解,对谁做变换就把谁放到积分里面去),得到结果 X ′ ( f ) X'(f) X(f)

X ′ ( f ) = ∫ − ∞ + ∞ x ( t ) e j 2 π f t d t X'(f)=\int_{-\infty}^{+\infty}x(t)e^{j2\pi ft}dt X(f)=+x(t)ej2πftdt

让我们加上 x ( t ) x(t) x(t)的傅里叶变换进行对比

X ( f ) = ∫ − ∞ + ∞ x ( t ) e − j 2 π f t d t X(f)=\int_{-\infty}^{+\infty}x(t)e^{-j2\pi ft}dt X(f)=+x(t)ej2πftdt

通过对比,容易得出的结论是 X ′ ( f ) = X ( − f ) X'(f)=X(-f) X(f)=X(f)。下面我们再换一个符号表示方法,将 f f f t t t调换一下(注意,只是调换符号,我们还没有赋予这个 x ( t ) x(t) x(t)的傅里叶反变换任何物理意义,所以暂时不要去带入这些符号的物理意义)

X ′ ( t ) = ∫ − ∞ + ∞ x ( f ) e j 2 π f t d f = X ( − t ) X'(t)=\int_{-\infty}^{+\infty}x(f)e^{j2\pi ft}df=X(-t) X(t)=+x(f)ej2πftdf=X(t)

由此,我们就通过 x ( t ) → X ( f ) x(t)\rightarrow X(f) x(t)X(f)这个傅里叶变换对得到了一组新的对偶的傅里叶变换对 X ( − t ) → x ( f ) X(-t)\rightarrow x(f) X(t)x(f)(这里因为我们是对 x ( t ) x(t) x(t)做的反变换,再换了一个自变量符号而已,所以 x ( f ) x(f) x(f)在傅里叶变换对的右侧)。也就是说,当我们把时域上的信号搬运到频域上时,其通过傅里叶反变换得到的时域信号与原信号对应的频域信号是镜像对称的,这就是所谓的对偶特性

二、傅里叶变换性质的推导方法

1.镜像特性

如果对时域信号 x ( t ) x(t) x(t)做镜像对称,那么就有其傅里叶变换

X ′ ( f ) = ∫ − ∞ + ∞ x ( − t ) e − j 2 π f t d t X'(f)=\int_{-\infty}^{+\infty}x(-t)e^{-j2\pi ft }dt X(f)=+x(t)ej2πftdt

这里需要注意的是,当我们对某个信号做傅里叶变换时是求它在一系列复单频信号上的坐标值(or系数、投影),无论信号是什么怎么变换,所用的复单频信号是一样的。所以写 x ( − t ) x(-t) x(t)的傅里叶变换时不要不小心把复单频信号的 t t t也给改变了。

我们对上面的公式进行换元 − t = t -t=t t=t, f = − f f=-f f=f得到

X ′ ( − f ) = ∫ − ∞ + ∞ x ( t ) e − j 2 π f t d t = X ( f ) X'(-f)=\int_{-\infty}^{+\infty}x(t)e^{-j2\pi ft }dt=X(f) X(f)=+x(t)ej2πftdt=X(f)
X ′ ( f ) = X ( − f ) X'(f)=X(-f) X(f)=X(f)
x ( − t ) → X ′ ( f ) = X ( − f ) x(-t)\rightarrow X'(f)=X(-f) x(t)X(f)=X(f)

由此我们就得出了傅里叶变换的镜像特性:将信号的a域做镜像时,其b域的图形也会变成镜像

结合这个性质我们也可以将上面推导的对偶特性再进一步推导,已知对偶特性由傅里叶变换对 x ( t ) → X ( f ) x(t)\rightarrow X(f) x(t)X(f),可得 X ( − t ) → x ( f ) X(-t)\rightarrow x(f) X(t)x(f);结合镜像特性则有 X ( t ) → x ( − f ) X(t)\rightarrow x(-f) X(t)x(f)。这样,我们就可以把刚刚的对偶性进一步补充完善:将信号从a域的搬运到b域时,其原信号在b域上对应的信号图形也会被搬运到a域,并做镜像处理

2. 共轭特性

如果对时域信号取共轭,则有傅里叶变换

X ′ ( f ) = ∫ − ∞ + ∞ x ∗ ( t ) e − j 2 π f t d t = ( ∫ − ∞ + ∞ x ( t ) e j 2 π f t d t ) ∗ = X ∗ ( − f ) X'(f)=\int_{-\infty}^{+\infty}x^*(t)e^{-j2\pi ft }dt=(\int_{-\infty}^{+\infty}x(t)e^{j2\pi ft }dt)^*=X^*(-f) X(f)=+x(t)ej2πftdt=(+x(t)ej2πftdt)=X(f)
x ∗ ( t ) → X ∗ ( − f ) x^*(t)\rightarrow X^*(-f) x(t)X(f)

结合镜像特性,则有

x ∗ ( − t ) → X ∗ ( f ) x^*(-t)\rightarrow X^*(f) x(t)X(f)

由此,总结出共轭特性:将信号在a域取共轭时,其在b域的图形也会取共轭,并做镜像处理。(这里更清楚地描述,对信号a域的图形取共轭,是指幅度图不变,相位图取反)

三、傅里叶变换的其他性质

傅里叶变换还有许多其他性质,这些性质可以帮我们通过已经掌握的信号傅里叶变换对,去快速推导新的傅里叶变换对。或者是面对一些复杂难以计算的傅里叶变换,通过对信号做一些操作(如求导)使得操作后的信号容易求得傅里叶变换,再通过傅里叶变换的性质推导原信号的傅里叶变换。

其他的性质有很多,如时移特性-频移特性,微分特性-积分特性,通过上述的方法——写出操作后的信号的傅里叶变换并想办法转化成与原信号傅里叶变换相关的形式,从而推导出操作后信号的傅里叶变换的表示,剩余这些性质的推导并不困难。这里留给读者自行推导,如有困难这部分内容我也可以在未来进行补充。

总结

这一篇笔记主要讲了一些傅里叶变换的基本性质及其推导,进一步加深对傅里叶变换的两域变换的物理意义的理解。最后也提到了这些性质可能会有什么用处。

目前为止的内容都是对电信号的电压变化即 x ( t ) x(t) x(t)分析,下一篇将会从信号的能量、功率的角度去分析信号。因为现实工程中,能耗和效率是必须考虑的问题。

  • 32
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值