能量信号与功率信号

  1. 能量信号与功率信号的定义
  2. 能量信号的相关性
  3. 功率信号的挑战
  4. 修正功率信号的相关性
  5. 数学基础
  6. 实际应用与示例
  7. 总结

1. 能量信号与功率信号的定义

能量信号

能量信号是指其在整个时间范围内具有有限能量的信号。能量信号的能量 E E E 定义如下:

  • 连续时间:

    E = ∫ − ∞ ∞ ∣ x ( t ) ∣ 2   d t E = \int_{-\infty}^{\infty} |x(t)|^2 \, dt E=x(t)2dt

  • 离散时间:

    E = ∑ n = − ∞ ∞ ∣ x ( n ) ∣ 2 E = \sum_{n=-\infty}^{\infty} |x(n)|^2 E=n=x(n)2

特点:

  • 有限能量: 0 < E < ∞ 0 < E < \infty 0<E<
  • 局部化: 能量信号通常只在有限的或局部范围内有非零值。
  • 示例: 脉冲信号、瞬时信号等。

功率信号

功率信号是指其具有有限平均功率无限能量的信号。功率信号的平均功率 P P P 定义如下:

  • 连续时间:

    P = lim ⁡ T → ∞ 1 2 T ∫ − T T ∣ x ( t ) ∣ 2   d t P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 \, dt P=Tlim2T1TTx(t)2dt

  • 离散时间:

    P = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N N ∣ x ( n ) ∣ 2 P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2 P=Nlim2N+11n=NNx(n)2

特点:

  • 有限功率: 0 < P < ∞ 0 < P < \infty 0<P<
  • 无限能量: 由于信号是无限持续的,导致总能量趋于无穷大。
  • 示例: 正弦波、周期信号、连续数据流。

区分能量信号与功率信号

  • 能量信号: 关注局部时间内能量有限的信号。
  • 功率信号: 关注持续存在但功率有限的信号。

注意: 信号不能同时是能量信号和功率信号。它们根据其能量和功率特性是相互排斥的。


2. 能量信号的相关性

能量信号的相关性定义

相关性衡量了两个信号随时间滞后变化时的相似性。对于能量信号交叉相关自相关通过积分或求和定义:

交叉相关

对于两个信号 x ( t ) x(t) x(t) y ( t ) y(t) y(t)交叉相关 r x y ( τ ) r_{xy}(\tau) rxy(τ) 定义为:

  • 连续时间:

    r x y ( τ ) = ∫ − ∞ ∞ x ( t ) y ( t + τ )   d t r_{xy}(\tau) = \int_{-\infty}^{\infty} x(t) y(t + \tau) \, dt rxy(τ)=x(t)y(t+τ)dt

  • 离散时间:

    r x y ( l ) = ∑ n = − ∞ ∞ x ( n ) y ( n + l ) r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n) y(n + l) rxy(l)=n=x(n)y(n+l)

自相关

x ( t ) = y ( t ) x(t) = y(t) x(t)=y(t) 时,交叉相关变为自相关 r x x ( τ ) r_{xx}(\tau) rxx(τ)

  • 连续时间:

    r x x ( τ ) = ∫ − ∞ ∞ x ( t ) x ( t + τ )   d t r_{xx}(\tau) = \int_{-\infty}^{\infty} x(t) x(t + \tau) \, dt rxx(τ)=x(t)x(t+τ)dt

  • 离散时间:

    r x x ( l ) = ∑ n = − ∞ ∞ x ( n ) x ( n + l ) r_{xx}(l) = \sum_{n=-\infty}^{\infty} x(n) x(n + l) rxx(l)=n=x(n)x(n+l)

适用于能量信号

对于能量信号,由于总能量有限,这些积分或求和产生有限的结果,使得相关性计算直观且易于解释。

示例:

假设一个能量信号 x ( n ) = { 1 , 2 , 3 } x(n) = \{1, 2, 3\} x(n)={1,2,3}

  • 滞后 0 的自相关:

    r x x ( 0 ) = 1 2 + 2 2 + 3 2 = 1 + 4 + 9 = 14 r_{xx}(0) = 1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14 rxx(0)=12+22+32=1+4+9=14

  • 滞后 1 的自相关:

    r x x ( 1 ) = ( 2 × 1 ) + ( 3 × 2 ) = 2 + 6 = 8 r_{xx}(1) = (2 \times 1) + (3 \times 2) = 2 + 6 = 8 rxx(1)=(2×1)+(3×2)=2+6=8

  • 滞后 2 的自相关:

    r x x ( 2 ) = ( 3 × 1 ) = 3 r_{xx}(2) = (3 \times 1) = 3 rxx(2)=(3×1)=3

  • 滞后 3 的自相关:

    r x x ( 3 ) = 0 ( 因为  x ( n + 3 ) = 0  对于所有  n ) r_{xx}(3) = 0 \quad (\text{因为 } x(n+3) = 0 \text{ 对于所有 } n) rxx(3)=0(因为 x(n+3)=0 对于所有 n)

自相关函数 r x x ( l ) r_{xx}(l) rxx(l) 在所有滞后 l l l 上都是有限的。


3. 功率信号的挑战

无限能量问题

对于功率信号,总能量 E E E 是无穷大的。直接应用标准的相关性定义会导致:

  • 未定义或无限的相关性: 积分或求和不会收敛,使得 r x y ( τ ) r_{xy}(\tau) rxy(τ) 未定义或无穷大。

例如,考虑一个连续的正弦信号 x ( t ) = cos ⁡ ( ω t ) x(t) = \cos(\omega t) x(t)=cos(ωt)

E = ∫ − ∞ ∞ cos ⁡ 2 ( ω t )   d t = ∞ E = \int_{-\infty}^{\infty} \cos^2(\omega t) \, dt = \infty E=cos2(ωt)dt=

同样,自相关也会是:

r x x ( 0 ) = ∫ − ∞ ∞ cos ⁡ 2 ( ω t )   d t = ∞ r_{xx}(0) = \int_{-\infty}^{\infty} \cos^2(\omega t) \, dt = \infty rxx(0)=cos2(ωt)dt=

需要修改定义

为了解决功率信号的问题,我们需要修改相关性定义,以获得有限的结果。这涉及将重点从总能量转向平均相关性


4. 修正功率信号的相关性

时间平均相关性

对于功率信号,不再在整个时间上积分或求和,而是计算时间平均相关性。这种方法确保即使能量无限,相关性仍然是有限的。

功率信号的交叉相关
  • 连续时间:

    r x y ( τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T x ( t ) y ( t + τ )   d t r_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) y(t + \tau) \, dt rxy(τ)=Tlim2T1TTx(t)y(t+τ)dt

  • 离散时间:

    r x y ( l ) = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N N x ( n ) y ( n + l ) r_{xy}(l) = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n=-N}^{N} x(n) y(n + l) rxy(l)=Nlim2N+11n=NNx(n)y(n+l)

功率信号的自相关

x ( t ) = y ( t ) x(t) = y(t) x(t)=y(t) 时,自相关为:

  • 连续时间:

    r x x ( τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T x ( t ) x ( t + τ )   d t r_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x(t + \tau) \, dt rxx(τ)=Tlim2T1TTx(t)x(t+τ)dt

  • 离散时间:

    r x x ( l ) = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N N x ( n ) x ( n + l ) r_{xx}(l) = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n=-N}^{N} x(n) x(n + l) rxx(l)=Nlim2N+11n=NNx(n)x(n+l)

时间平均相关性的关键特点

  1. 有限结果: 通过时间平均计算,相关性度量了信号之间的平均相似性,确保结果有限。

  2. 平稳性假设: 通常假设信号是平稳的,即它们的统计性质不随时间变化。这确保了时间平均收敛。

  3. 适用于周期信号与随机信号: 时间平均相关性适用于分析周期信号(如正弦波)和随机信号(如噪声)。

示例:正弦功率信号的自相关

考虑 x ( t ) = cos ⁡ ( ω t ) x(t) = \cos(\omega t) x(t)=cos(ωt)

  • 滞后 τ \tau τ 的自相关:

    r x x ( τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T cos ⁡ ( ω t ) cos ⁡ ( ω ( t + τ ) )   d t r_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \cos(\omega t) \cos(\omega (t + \tau)) \, dt rxx(τ)=Tlim2T1TTcos(ωt)cos(ω(t+τ))dt

    使用三角恒等式:

    cos ⁡ ( ω t ) cos ⁡ ( ω ( t + τ ) ) = 1 2 [ cos ⁡ ( 2 ω t + ω τ ) + cos ⁡ ( ω τ ) ] \cos(\omega t) \cos(\omega (t + \tau)) = \frac{1}{2} \left[ \cos(2\omega t + \omega \tau) + \cos(\omega \tau) \right] cos(ωt)cos(ω(t+τ))=21[cos(2ωt+ωτ)+cos(ωτ)]

    cos ⁡ ( 2 ω t + ω τ ) \cos(2\omega t + \omega \tau) cos(2ωt+ωτ) 进行积分,随着 T → ∞ T \to \infty T 收敛为零,最终结果为:

    r x x ( τ ) = 1 2 cos ⁡ ( ω τ ) r_{xx}(\tau) = \frac{1}{2} \cos(\omega \tau) rxx(τ)=21cos(ωτ)

    结果: 自相关是有限的,且随滞后 τ \tau τ 振荡,振幅为 1 2 \frac{1}{2} 21


5. 数学基础

能量信号与功率信号相关性的定义

为了明确两者的区别:

能量信号
  • 能量 E E E

    E = ∫ − ∞ ∞ ∣ x ( t ) ∣ 2   d t < ∞ (连续时间) E = \int_{-\infty}^{\infty} |x(t)|^2 \, dt < \infty \quad \text{(连续时间)} E=x(t)2dt<(连续时间)

    E = ∑ n = − ∞ ∞ ∣ x ( n ) ∣ 2 < ∞ (离散时间) E = \sum_{n=-\infty}^{\infty} |x(n)|^2 < \infty \quad \text{(离散时间)} E=n=x(n)2<(离散时间)

  • 相关性:

    r x y ( τ ) = ∫ − ∞ ∞ x ( t ) y ( t + τ )   d t (连续时间) r_{xy}(\tau) = \int_{-\infty}^{\infty} x(t) y(t + \tau) \, dt \quad \text{(连续时间)} rxy(τ)=x(t)y(t+τ)dt(连续时间)

    r x y ( l ) = ∑ n = − ∞ ∞ x ( n ) y ( n + l ) (离散时间) r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n) y(n + l) \quad \text{(离散时间)} rxy(l)=n=x(n)y(n+l)(离散时间)

功率信号
  • 平均功率 P P P

    P = lim ⁡ T → ∞ 1 2 T ∫ − T T ∣ x ( t ) ∣ 2   d t (连续时间) P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 \, dt \quad \text{(连续时间)} P=Tlim2T1TTx(t)2dt(连续时间)

    P = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N N ∣ x ( n ) ∣ 2 (离散时间) P = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n=-N}^{N} |x(n)|^2 \quad \text{(离散时间)} P=Nlim2N+11n=NNx(n)2(离散时间)

  • 时间平均相关性:

    r x y ( τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T x ( t ) y ( t + τ )   d t (连续时间) r_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) y(t + \tau) \, dt \quad \text{(连续时间)} rxy(τ)=Tlim2T1TTx(t)y(t+τ)dt(连续时间)

    r x y ( l ) = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N N x ( n ) y ( n + l ) (离散时间) r_{xy}(l) = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n=-N}^{N} x(n) y(n + l) \quad \text{(离散时间)} rxy(l)=Nlim2N+11n=NNx(n)y(n+l)(离散时间)

相关性中的柯西-施瓦茨不等式

无论处理的是能量信号还是功率信号,柯西-施瓦茨不等式仍然适用。它表示:

∣ r x y ( τ ) ∣ ≤ E x E y (适用于能量信号) |r_{xy}(\tau)| \leq \sqrt{E_x E_y} \quad \text{(适用于能量信号)} rxy(τ)ExEy (适用于能量信号)

∣ r x y ( τ ) ∣ ≤ P x P y (适用于功率信号,使用时间平均相关性) |r_{xy}(\tau)| \leq \sqrt{P_x P_y} \quad \text{(适用于功率信号,使用时间平均相关性)} rxy(τ)PxPy (适用于功率信号,使用时间平均相关性)

含义:

  • 相关性有界: 确保相关性的幅度不会超过信号能量或功率的几何平均值。
  • 归一化: 有助于定义归一化相关系数,范围在 -1 到 1 之间。

6. 实际应用与示例

示例 1:能量信号的相关性

信号:

x ( n ) = { 1 , 2 , 3 } x(n) = \{1, 2, 3\} x(n)={1,2,3}

自相关 r x x ( l ) r_{xx}(l) rxx(l)

  • 滞后 0:

    r x x ( 0 ) = 1 2 + 2 2 + 3 2 = 14 r_{xx}(0) = 1^2 + 2^2 + 3^2 = 14 rxx(0)=12+22+32=14

  • 滞后 1:

    r x x ( 1 ) = ( 1 × 2 ) + ( 2 × 3 ) = 2 + 6 = 8 r_{xx}(1) = (1 \times 2) + (2 \times 3) = 2 + 6 = 8 rxx(1)=(1×2)+(2×3)=2+6=8

  • 滞后 2:

    r x x ( 2 ) = 1 × 3 = 3 r_{xx}(2) = 1 \times 3 = 3 rxx(2)=1×3=3

  • 滞后 3:

    r x x ( 3 ) = 0 r_{xx}(3) = 0 rxx(3)=0

解释:

  • 自相关在滞后 0 时达到峰值(最大能量)。
  • 随滞后增加,自相关减小,反映了信号的重叠减少。

示例 2:功率信号的相关性

信号:

x ( t ) = cos ⁡ ( ω t ) x(t) = \cos(\omega t) x(t)=cos(ωt) (连续时间)

自相关 r x x ( τ ) r_{xx}(\tau) rxx(τ)

r x x ( τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T cos ⁡ ( ω t ) cos ⁡ ( ω ( t + τ ) )   d t = 1 2 cos ⁡ ( ω τ ) r_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \cos(\omega t) \cos(\omega (t + \tau)) \, dt = \frac{1}{2} \cos(\omega \tau) rxx(τ)=Tlim2T1TTcos(ωt)cos(ω(t+τ))dt=21cos(ωτ)

解释:

  • 自相关随着滞后 τ \tau τ 振荡。
  • cos ⁡ ( ω τ ) = 1 \cos(\omega \tau) = 1 cos(ωτ)=1 处达到峰值(即 τ = 0 , ± 2 π ω , ± 4 π ω , … \tau = 0, \pm \frac{2\pi}{\omega}, \pm \frac{4\pi}{\omega}, \ldots τ=0,±ω2π,±ω4π,)。
  • 表示周期性相似性,这是功率信号的特性。

示例 3:功率信号的交叉相关

信号:

x ( t ) = cos ⁡ ( ω t ) x(t) = \cos(\omega t) x(t)=cos(ωt)

y ( t ) = sin ⁡ ( ω t ) y(t) = \sin(\omega t) y(t)=sin(ωt)

交叉相关 r x y ( τ ) r_{xy}(\tau) rxy(τ)

r x y ( τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T cos ⁡ ( ω t ) sin ⁡ ( ω ( t + τ ) )   d t r_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \cos(\omega t) \sin(\omega (t + \tau)) \, dt rxy(τ)=Tlim2T1TTcos(ωt)sin(ω(t+τ))dt

使用三角恒等式:

cos ⁡ ( ω t ) sin ⁡ ( ω ( t + τ ) ) = 1 2 [ sin ⁡ ( 2 ω t + ω τ ) + sin ⁡ ( ω τ ) ] \cos(\omega t) \sin(\omega (t + \tau)) = \frac{1}{2} \left[ \sin(2\omega t + \omega \tau) + \sin(\omega \tau) \right] cos(ωt)sin(ω(t+τ))=21[sin(2ωt+ωτ)+sin(ωτ)]

积分分析:

  • sin ⁡ ( 2 ω t + ω τ ) \sin(2\omega t + \omega \tau) sin(2ωt+ωτ) 项在无限时间上平均为零。
  • 剩下的是 sin ⁡ ( ω τ ) \sin(\omega \tau) sin(ωτ) 项。

r x y ( τ ) = 1 2 sin ⁡ ( ω τ ) r_{xy}(\tau) = \frac{1}{2} \sin(\omega \tau) rxy(τ)=21sin(ωτ)

解释:

  • 交叉相关是有限且正弦形式的。
  • 表示 x ( t ) x(t) x(t) y ( t ) y(t) y(t) 之间的相位关系。

7. 总结

关键点

  1. 能量信号 vs. 功率信号:

    • 能量信号: 能量有限,局部时间内存在。
    • 功率信号: 平均功率有限,但持续存在。
  2. 相关性定义:

    • 能量信号: 使用标准的相关性定义,通过积分或求和计算。
    • 功率信号: 使用时间平均相关性定义,确保结果有限。
  3. 数学基础:

    • 柯西-施瓦茨不等式: 限制相关性的最大值。
    • 时间平均: 处理功率信号时至关重要。
  4. 实际意义:

    • 能量信号: 适合分析短暂或有限时长的现象。
    • 功率信号: 适合分析连续、周期或随机过程中的持续活动。
  5. 归一化:

    • 有助于比较,并确保相关系数的解释在合理范围内。

最终思考

理解能量信号和功率信号的区别,对于应用相关性分析至关重要:

  • 对于能量信号: 可以直接计算相关性,结果是有意义的。
  • 对于功率信号: 通过时间平均修正相关性定义,确保分析结果是有效且可解释的。

这些概念在信号检测、通信系统和系统识别等许多应用中起着至关重要的作用。正确区分能量信号和功率信号,并应用适当的相关性定义,能够确保各种工程和科学领域中的分析结果准确且有意义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值