【通信原理笔记】【二】随机信号分析——2.4 复随机过程

本文介绍了复随机过程的定义,包括其定义、均值和自相关函数,重点讲解了复平稳过程的特征,如均值恒定、自相关函数与共轭自相关函数仅与时间差有关。同时,文中还探讨了平稳带通过程的解析表示和复包络特性。后续将介绍高斯随机过程的重要地位。
摘要由CSDN通过智能技术生成


前言

目前为止,我们对实随机过程的分析方法已经基本掌握了。像复信号一样,我们也会有需要处理复随机过程的时候,这篇笔记我们就来学习一下复随机过程。

强调一下,由于平稳过程的均值是常数,在讨论平稳随机过程时都会默认做了零均值处理,即默认任意涉及到的平稳过程均为零均值随机过程。


一、复随机过程

1.1定义

复随机过程 Z ( t ) = X ( t ) + j Y ( t ) Z(t)=X(t)+jY(t) Z(t)=X(t)+jY(t)是由一对实随机过程组成。其均值根据定义容易得到,自相关函数定义则需要加上共轭符号:

E Z ( t ) = E X ( t ) + j E Y ( t ) EZ(t)=EX(t)+jEY(t) EZ(t)=EX(t)+jEY(t)
R Z ( t , τ ) = E Z ∗ ( t ) Z ( t + τ ) = E { [ X ( t ) + j Y ( t ) ] ∗ [ X ( t + τ ) + j Y ( t + τ ) ] } R_Z(t,\tau)=EZ^*(t)Z(t+\tau)=E\left\{[X(t)+jY(t)]^*[X(t+\tau)+jY(t+\tau)]\right\} RZ(t,τ)=EZ(t)Z(t+τ)=E{[X(t)+jY(t)][X(t+τ)+jY(t+τ)]}
= R X ( t , τ ) + R Y ( t , τ ) − j R X Y ( t , τ ) − j R Y X ( t , τ ) =R_X(t,\tau)+R_Y(t,\tau)-jR_{XY}(t,\tau)-jR_{YX}(t,\tau) =RX(t,τ)+RY(t,τ)jRXY(t,τ)jRYX(t,τ)

此外,还可以定义一个共轭自相关函数,即复随机过程 Z ( t ) Z(t) Z(t)与自身共轭 Z ∗ ( t ) Z^*(t) Z(t)的自相关函数:

R Z Z ∗ ( t , τ ) = E ( Z ∗ ( t ) Z ∗ ( t + τ ) ) R_{ZZ^*}(t,\tau)=E(Z^*(t)Z^*(t+\tau)) RZZ(t,τ)=E(Z(t)Z(t+τ))

注意共轭自相关函数交换顺序结果是不一样的,他们的结果是共轭的关系。

1.2 复平稳过程

复平稳过程的定义就是需要其实部虚部联合平稳,这个定义有个等价定义:复随机过程 Z ( t ) Z(t) Z(t)的均值为常数,其自相关函数与共轭自相关函数只与时间差有关。下面来简单证明一下这两个定义等价

先证“=>”:

E Z ( t ) = m X + j m Y EZ(t)=m_X+jm_Y EZ(t)=mX+jmY,
R Z ( t , τ ) = R X ( t , τ ) + R Y ( t , τ ) − j R X Y ( t , τ ) − j R Y X ( t , τ ) R_Z(t,\tau)=R_X(t,\tau)+R_Y(t,\tau)-jR_{XY}(t,\tau)-jR_{YX}(t,\tau) RZ(t,τ)=RX(t,τ)+RY(t,τ)jRXY(t,τ)jRYX(t,τ)
= R X ( τ ) + R Y ( τ ) − j R X Y ( τ ) − j R Y X ( τ ) =R_X(\tau)+R_Y(\tau)-jR_{XY}(\tau)-jR_{YX}(\tau) =RX(τ)+RY(τ)jRXY(τ)jRYX(τ),
R Z Z ∗ ( t , τ ) = R X ( t , τ ) + R Y ( t , τ ) − j R X Y ( t , τ ) − j R Y X ( t , τ ) R_{ZZ^*}(t,\tau)=R_X(t,\tau)+R_Y(t,\tau)-jR_{XY}(t,\tau)-jR_{YX}(t,\tau) RZZ(t,τ)=RX(t,τ)+RY(t,τ)jRXY(t,τ)jRYX(t,τ)
= R X ( τ ) − R Y ( τ ) − j R X Y ( τ ) − j R Y X ( τ ) =R_X(\tau)-R_Y(\tau)-jR_{XY}(\tau)-jR_{YX}(\tau) =RX(τ)RY(τ)jRXY(τ)jRYX(τ),

再证明“<=”:

先证 X ( t ) X(t) X(t)为平稳过程
E X ( t ) = E Z ( t ) / 2 + E Z ∗ ( t ) / 2 = m Z / 2 + m Z ∗ / 2 EX(t)=EZ(t)/2+EZ*(t)/2=m_Z/2+m^*_Z/2 EX(t)=EZ(t)/2+EZ(t)/2=mZ/2+mZ/2
R X ( t , τ ) = 1 4 E { [ Z ( t ) + Z ∗ ( t ) ] [ Z ( t + τ ) + Z ∗ ( t + τ ) ] } R_X(t,\tau)=\frac{1}{4}E\left\{[Z(t)+Z^*(t)][Z(t+\tau)+Z^*(t+\tau)]\right\} RX(t,τ)=41E{[Z(t)+Z(t)][Z(t+τ)+Z(t+τ)]}
= R Z ∗ Z ( τ ) + R Z ( τ ) + R Z Z ∗ ( τ ) + R Z ∗ ( τ ) =R_{Z^*Z}(\tau)+R_Z(\tau)+R_{ZZ^*}(\tau)+R^*_Z(\tau) =RZZ(τ)+RZ(τ)+RZZ(τ)+RZ(τ)
同理可以证得 Y ( t ) Y(t) Y(t)也是平稳过程,且他们联合平稳。

二、平稳带通过程分析

2.1 解析过程

和带通信号分析一样,平稳带通过程(功率谱集中在频带的平稳过程)也可以通过引入解析过程与复包络来实现等效系带分析。先考虑一个零均值带通平稳过程 X ( t ) X(t) X(t),可以得到它的解析过程:

Z ( t ) = X ( t ) + j X ^ ( t ) Z(t)=X(t)+j\hat{X}(t) Z(t)=X(t)+jX^(t)

通过上一篇的结论我们知道, X ( t ) , X ^ ( t ) X(t),\hat{X}(t) X(t),X^(t)联合平稳,因此 Z ( t ) Z(t) Z(t)为复平稳随机过程,计算它的自相关函数有:

R Z ( t ) = E [ X ( t ) − j X ^ ( t ) ] [ X ( t + τ ) + j X ^ ( t + τ ) ] R_Z(t)=E[X(t)-j\hat{X}(t)][X(t+\tau)+j\hat{X}(t+\tau)] RZ(t)=E[X(t)jX^(t)][X(t+τ)+jX^(t+τ)]
= R X ( τ ) − j R X ^ X ( τ ) + j R X X ^ ( τ ) + R X ^ ( τ ) =R_X(\tau)-jR_{\hat{X}X}(\tau)+jR_{X\hat{X}}(\tau)+R_{\hat{X}}(\tau) =RX(τ)jRX^X(τ)+jRXX^(τ)+RX^(τ)
由上一篇的结论: R X ( τ ) = R X ^ ( τ ) , R X ^ X ( τ ) = R X X ^ ( − τ ) = R ^ X ( τ ) R_X(\tau)=R_{\hat{X}}(\tau),R_{\hat{X}X}(\tau)=R_{X\hat{X}}(-\tau)=\hat{R}_X(\tau) RX(τ)=RX^(τ),RX^X(τ)=RXX^(τ)=R^X(τ),进一步化简结果有:
= 2 R X ( τ ) + 2 j R ^ X ( τ ) =2R_X(\tau)+2j\hat{R}_X(\tau) =2RX(τ)+2jR^X(τ)

这个形式其实就是 R X ( τ ) R_X(\tau) RX(τ)的解析信号的两倍,因此有类似于确定信号的解析信号的关系:

P Z ( f ) = 4 P X ( f ) , f > 0 P_Z(f)=4P_X(f),f>0 PZ(f)=4PX(f)f>0

(注意,这里将自相关函数看作信号,解析信号的频谱是原频谱的两倍,再乘上2才变成了四倍。)

类似的可以计算 Z ( t ) Z(t) Z(t)的共轭自相关函数,这里不再重复,化简之后得到的结果是 R Z Z ∗ ( τ ) = 0 R_{ZZ^*}(\tau)=0 RZZ(τ)=0即解析过程与自身的共轭过程不相关

2.2 随机过程的复包络

类似于确定信号,我们有带通过程 X ( t ) X(t) X(t)的复包络:

X L ( t ) = Z ( t ) e − j 2 π f c t X_L(t)=Z(t)e^{-j2\pi f_ct} XL(t)=Z(t)ej2πfct

依次计算其均值,自相关函数,共轭自相关函数:

E X L ( t ) = e − j 2 π f c t E Z ( t ) = 0 , EX_L(t)=e^{-j2\pi f_ct}EZ(t)=0, EXL(t)=ej2πfctEZ(t)=0,
E X L ∗ ( t ) X L ( t + τ ) = E Z ∗ ( t ) e j 2 π f c t Z ( t + τ ) e − j 2 π f c ( t + τ ) EX^*_L(t)X_L(t+\tau)=EZ^*(t)e^{j2\pi f_ct}Z(t+\tau)e^{-j2\pi f_c(t+\tau)} EXL(t)XL(t+τ)=EZ(t)ej2πfctZ(t+τ)ej2πfc(t+τ)
= R Z ( τ ) e − j 2 π f c τ =R_Z(\tau)e^{-j2\pi f_c\tau} =RZ(τ)ej2πfcτ
E X L ( t ) X L ( t + τ ) = E Z ( t ) Z ( t + τ ) e − j 2 π f c t e − j 2 π f c ( t + τ ) EX_L(t)X_L(t+\tau)=EZ(t)Z(t+\tau)e^{-j2\pi f_ct}e^{-j2\pi f_c(t+\tau)} EXL(t)XL(t+τ)=EZ(t)Z(t+τ)ej2πfctej2πfc(t+τ)
R Z Z ∗ ( τ ) e − j 2 π f c ( 2 t + τ ) = 0 R_{ZZ^*}(\tau)e^{-j2\pi f_c(2t+\tau)}=0 RZZ(τ)ej2πfc(2t+τ)=0

可以看到,平稳带通过程的复包络是复平稳过程,且其与自身的共轭过程不相关。进一步也可以看到复包络的功率谱是平稳带通过程的功率向左搬移 f c f_c fc的四倍。与确定信号分析中的结果一致。此外,既然该复包络是复平稳过程,根据等价定义,则有其实部虚部联合平稳。

三、平稳序列与循环平稳

这两个内容不准备单独写一篇了,并不算是重点内容,就在这简单提一下把,之后如果有用到这些概念再做详细介绍。

所谓随机序列就是把时间离散化,变成整数时间序列 n n n。所以平稳随机序列就是其均值为常数,自相关函数仅与时间序列差有关。

循环平稳则是进一步放宽了平稳过程的条件,即随机过程的均值和自相关函数是关于时间 t t t的周期函数。


总结

这一篇介绍了复随机过程以及复平稳过程,这一节与确定信号分析中的带通信号及复包络那节类似。

下一篇将会介绍高斯随机过程,这是一种非常重要的随机过程模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值