【通信原理笔记】【二】随机信号分析——2.4 复随机过程

本文介绍了复随机过程的定义,包括其定义、均值和自相关函数,重点讲解了复平稳过程的特征,如均值恒定、自相关函数与共轭自相关函数仅与时间差有关。同时,文中还探讨了平稳带通过程的解析表示和复包络特性。后续将介绍高斯随机过程的重要地位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

目前为止,我们对实随机过程的分析方法已经基本掌握了。像复信号一样,我们也会有需要处理复随机过程的时候,这篇笔记我们就来学习一下复随机过程。

强调一下,由于平稳过程的均值是常数,在讨论平稳随机过程时都会默认做了零均值处理,即默认任意涉及到的平稳过程均为零均值随机过程。


一、复随机过程

1.1定义

复随机过程 Z ( t ) = X ( t ) + j Y ( t ) Z(t)=X(t)+jY(t) Z(t)=X(t)+jY(t)是由一对实随机过程组成。其均值根据定义容易得到,自相关函数定义则需要加上共轭符号:

E Z ( t ) = E X ( t ) + j E Y ( t ) EZ(t)=EX(t)+jEY(t) EZ(t)=EX(t)+jEY(t)
R Z ( t , τ ) = E Z ∗ ( t ) Z ( t + τ ) = E { [ X ( t ) + j Y ( t ) ] ∗ [ X ( t + τ ) + j Y ( t + τ ) ] } R_Z(t,\tau)=EZ^*(t)Z(t+\tau)=E\left\{[X(t)+jY(t)]^*[X(t+\tau)+jY(t+\tau)]\right\} RZ(t,τ)=EZ(t)Z(t+τ)=E{ [X(t)+jY(t)][X(t+τ)+jY(t+τ)]}
= R X ( t , τ ) + R Y ( t , τ ) − j R X Y ( t , τ ) − j R Y X ( t , τ ) =R_X(t,\tau)+R_Y(t,\tau)-jR_{XY}(t,\tau)-jR_{YX}(t,\tau) =RX(t,τ)+RY(t,τ)jRXY(t,τ)jRYX(t,τ)

此外,还可以定义一个共轭自相关函数,即复随机过程 Z ( t ) Z(t) Z(t)与自身共轭 Z ∗ ( t ) Z^*(t) Z(t)的自相关函数:

R Z Z ∗ ( t , τ ) = E ( Z ∗ ( t ) Z ∗ ( t + τ ) ) R_{ZZ^*}(t,\tau)=E(Z^*(t)Z^*(t+\tau)) RZZ(t,τ)=E(Z(t)Z(t+τ))

注意共轭自相关函数交换顺序结果是不一样的,他们的结果是共轭的关系。

1.2 复平稳过程

复平稳过程的定义就是需要其实部虚部联合平稳,这个定义有个等价定义:复随机过程 Z ( t ) Z(t) Z(t)的均值为常数,其自相关函数与共轭自相关函数只与时间差有关。下面来简单证明一下这两个定义等价

先证“=>”:

E Z ( t ) = m X + j m Y EZ(t)=m_X+jm_Y EZ(t)=mX+jmY,
R Z ( t , τ ) = R X ( t , τ ) + R Y ( t , τ ) − j R X Y ( t , τ ) − j R Y X ( t , τ ) R_Z(t,\tau)=R_X(t,\tau)+R_Y(t,\tau)-jR_{XY}(t,\tau)-jR_{YX}(t,\tau)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值