简化版本的master定理

前言

上回看洛谷日报的时候,看到一个很有意思的东西,叫master定理,是关于计算时间复杂度的(主要针对初赛的选择题)。
这是那天洛谷日报的链接:https://www.luogu.org/blog/Chanis/master

时间复杂度

master定理又叫主定理。
我们用T(n)表示时间复杂度。时间复杂度在计算的时候、只需要管复杂度最高的一部分,且忽略系数。比如若实际复杂度为 3 n 2 + 2 n + 5 3n^2+2n+5 3n2+2n+5,则T(n)为 O ( n 2 ) O(n^2) O(n2)
时间复杂度以以下式子给出:
T(n)=a*T(n/b)+f(n)
其中a,b,f(n)均已知,求T(n)。当然,T(1)可以认为是O(1)。
时间复杂度比较大小就看增长率,如 O ( n 3 ) > O ( n 2 ) , O ( n ! ) > O ( 2 n ) O(n^3)>O(n^2),O(n!)>O(2^n) O(n3)>O(n2),O(n!)>O(2n)
我们不关心logn的底数是多少,即 O ( l o g 2 n ) = O ( l o g 3 n ) = O ( l o g n ) O(log_2^n)=O(log_3^n)=O(logn) O(log2n)=O(log3n)=O(logn)

定理简介

其实定理是比较麻烦的,情况也是比较多的。以下是我根据我对定理的理解,给出的它的简化版本。
1和2两种情况的前提是f(n)为n的几次幂(如 n , n 2 , n n,n^2,\sqrt{n} n,n2,n )或n!或常数的n次方(如 2 n , 3 n 2^n,3^n 2n,3n)。(也就是不含logn)
1.若 n l o g b a ! = f ( n ) n^{log_b^a}!=f(n) nlogba!=f(n),则 T ( n ) = m a x ( n l o g b a , f ( n ) ) T(n)=max(n^{log_b^a},f(n)) T(n)=max(nlogba,f(n))
2.若 n l o g b a = f ( n ) n^{log_b^a}=f(n) nlogba=f(n),则 T ( n ) = f ( n ) ∗ l o g n T(n)=f(n)*logn T(n)=f(n)logn
3.若f(n)含有logn(设 f ( n ) = g ( n ) ∗ l o g k n f(n)=g(n)*log^k{n} f(n)=g(n)logkn),且 n l o g b a = g ( n ) n^{log_b^a}=g(n) nlogba=g(n),则 T ( n ) = f ( n ) ∗ l o g n T(n)=f(n)*logn T(n)=f(n)logn
4.其他情况该定理无法解决

总结

这个证明实在是太难了,而且情况又那么多,非常麻烦。记住结论吧,初赛已经考过很多次了。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值