机器学习:如何理解机器学习中的逻辑回归

逻辑回归也可以说是一个分类器。在二分类器中,输出要么是0,要么是1。所以对于一组输入来说,我们要做的就是通过这个输入的数据,经过假设函数的处理之后,输出结果是1的概率。也就是说,输出是一个概率值。所以现在要转成逻辑函数:

hθ(x)=11+eθTx

如何理解这个逻辑函数呢?
这个函数就是为了评估输入为x时,输出的结果刚好是y=1的概率。所以如果我们有一组数据 (x(i),y(i)=1) 那么
hθ(x(i))=11+eθTx(i)
的结果应该尽可能使得 hθ(x(i)) 的结果接近于1(通过调整 θ )。

那么,当我们有m组数据时,哪一组 θ 是拟合得最好(效果最好)的呢?拟合得最好的那组 θ 就是我们想要的。所以我们可以定义代价函数为:

Cost(hθ(x),y)={log(hθ(x))if  y=1log(1hθ(x))if  y=0

为什么这么定义呢?
我们可以画出 log(hθ(x)) 的图形:
这里写图片描述

从图中我们可以看到,当 hθ(x) 趋向于1的时候,说明有更高的概率y=1,而这个函数也是当y=1的时候的函数形式。y=1时, hθ(x) 趋向于1, log(hθ(x)) 的值越小,也就是代价越小。同理,当y=0时, log(1hθ(x)) 也是这种趋势。

因为y要么是1,要么是0,所以代价函数可以写为:

Cost(hθ(x),y)=y log(hθ(x))(1y)log(1hθ(x))

所以:
J(θ)=1mi=1mCost(hθ(x(i)),y(i))=1m[i=1my(i)log(hθ(x))+(1y(i))log(1hθ(x(i)))]

我们的目标就是获得 J(θ) 最小值时的那组 θ 值。

事实上,我们也可以使用平方差来作为代价函数:

Cost(hθ(x),y)=(hθ(x(i))y(i))2

虽然它们在形式上不一样,但是它们的意义是一样。都是刻画了每一组输入x与对应的y之间的差距。我们的目标都是为了找到一组 θ 来最小化这个差距。写成这种形式之后,又可以使用梯度下降算法来拟合参数了。关于梯度下降算法可以参考我的 上一篇博文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值