一读就懂!用大白话讲清楚Transformer的工作基础流程

关于Transformer想信大家并不陌生,网上文章地相关描述大致如下:

Transformer:一种基于自注意力机制的神经网络结构,通过并行计算和多层特征抽取,有效解决了长序列依赖问题,实现了在自然语言处理等领域的突破。

Transformer架构:主要由输入部分(输入输出嵌入与位置编码)、多层编码器、多层解码器以及输出部分(输出线性层与Softmax)四大部分组成。

很显然上面的解释,对于初学者是极其不友好的,一看一个不吱声!我相信90%的同学只是想了解Transformer工作的基础流程,而并不想了解其中的实现细节,那么今天我就用一个生动的实例满足大家的需求!

我是沈阳人,我想向外地的老铁们来介绍一下我的家乡沈阳,那么Transformer生成沈阳介绍的流程大致如下:

首先我们把Transformer想象成一间智能厨房

  • 厨师(AI模型)看过无数本菜谱(训练数据)
  • 厨房里有一群配合默契的帮厨(多头注意力机制)
  • 每个帮厨都盯着所有食材(输入文字),但各自关注不同部分

然后要做"沈阳介绍"这道菜时,按照下面的步骤进行

  1. 理解订单:拆解"沈阳""家乡""介绍"等关键词
  2. 食材准备:从记忆库调取相关信息
  • 历史:清朝发祥地、故宫
  • 地标:彩电塔、中街
  • 美食:老边饺子、鸡架
  • 季节:四季分明

      3. 分层加工

  • 第一层帮厨:把"故宫""北京故宫"对比
  • 第二层帮厨:把"鸡架"和城市夜生活关联
  • 第三层帮厨:串联工业历史和现代转型

     4.摆盘上菜

  • 按照"--"结构:
  • 开头点题分段详述抒情结尾

另外还要补充一些特殊能力

  • 同时看全桌调料(并行处理):不用像老式RNN那样一个个字处理
  • 自动加重点(自注意力):说到"老四季抻面"时,自动关联鸡架文化
  • 防跑题机制(位置编码):确保先说地理位置再说历史,顺序合理

实际生成时,就像有个看不见的沈阳导游在你大脑里:

  1. 先画思维导图(生成大纲)
  2. 给每个景点配小故事(细节填充)
  3. 最后用"欢迎来沈阳"收尾(情感升华)

整个过程比人写作文快n倍,但会偶尔出现"沈阳靠海"这种错误(因为学习数据有噪声),这正是人类需要校对的原因。

我的每一篇文章都希望帮助读者解决实际工作中遇到的问题!如果文章帮到了您,劳烦点赞、收藏、转发!您的鼓励是我不断更新文章最大的动力!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测试开发Kevin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值