深度学习基础9(优化算法,梯度下降,小批量随机梯度下降,超参数)
于 2022-03-26 16:06:42 首次发布
这篇博客介绍了深度学习的基础优化方法,主要讲解了梯度下降和小批量随机梯度下降。梯度下降是通过沿着反梯度方向更新参数来寻找最优解,而小批量随机梯度下降是深度学习中常用的优化算法,它在计算效率和资源利用之间取得平衡。学习率作为关键的超参数,需要适中选择,避免震荡或缓慢收敛。




最低0.47元/天 解锁文章
294

被折叠的 条评论
为什么被折叠?



