基于LoRa技术的智慧农业系统研究与设计

我国正处在传统农业向现在农业的转变时期。为了实现新技术体现的转变,网络信息技术将会发挥巨大的作用。在传统农业中,农户或管理者主要通过人工测量这种单通道方式获得田间数据,在获取数据的过程中需要耗费大量人力。应用物联网技术不但可以实时收集大气环境信息,而且可以采集土壤环境信息,还可获得环境信息等。智慧农业可以帮助相关专业机构对数据进行分析、整理、融合,并对灾害进行预测,可以帮助农户或专业管理科学种植,提高产品综合效益,实现农业生产的低功耗、传输距离远抗干扰性强,灵敏度高低成本等要求

国外发达国家计算机起步较早,对于信息技术的掌握比较成熟,很多国家早已经开始了对智

### LoRA 技术概述 LoRA(Low-Rank Adaptation)是一种针对大型语言模型(LLM)微调的技术,旨在通过引入低秩矩阵分解的方式显著降低参数更新的数量,从而提高效率并减少计算资源的需求[^3]。这种方法的核心在于仅调整原始模型权重的一个低维子空间,而不是直接修改整个模型的权重。 #### 低秩适应(LoRA)的工作机制 在传统的全量微调中,所有的模型参数都会被重新训练,这种方式不仅耗费大量算力,还容易导致灾难性遗忘现象的发生。相比之下,LoRA 提出了一个创新性的思路——通过对 Transformer 架构中的线性层进行低秩分解,将原本高维度的权重矩阵拆分为两个更低维度的小矩阵 \( A \in \mathbb{R}^{d_{\text{hidden}} \times r} \) 和 \( B \in \mathbb{R}^{r \times d_{\text{output}}} \),其中 \( r \) 表示低秩矩阵的秩[^1]。这种设计使得只需要优化少量新增加的参数即可完成目标任务的学习过程。 #### 超参数 r 的影响分析 超参数 \( r \) 在 LoRA 方法里扮演着至关重要的角色。当选择较小值时,能够有效减少可训练参数数量进而加快收敛速度;但是同时也限制了网络表达能力,可能会造成欠拟合风险增加的情况发生。反之如果设置较大数值,则允许更多自由度去捕捉复杂的模式特征,不过随之而来的是更高时间成本开销以及可能出现过拟合等问题。因此实际应用当中通常需要经过多次实验探索最佳范围内的合适取值来达到理想效果之间的权衡点。 #### 实践意义优势总结 采用 LoRA 方案不仅可以大幅削减存储占用率和加速推理阶段运行效率外,在迁移学习场景下也表现出色。由于其专注于局部区域内的细粒度调节而非全局覆盖式的改动方式,所以特别适合那些希望利用已有大规模预训练成果快速适配到不同领域或者特殊用途上去的企业和个人开发者们使用[^2]。 ```python import torch from transformers import AutoModelForCausalLM, LoraConfig, get_linear_schedule_with_warmup model_name_or_path = "bigscience/bloom" lora_rank = 8 # Example value of 'r' config = LoraConfig( r=lora_rank, lora_alpha=16, target_modules=["q_proj", "v_proj"], # Specify the modules to apply LoRA on. ) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) model = model.train() # Apply LoRA configuration and prepare optimizer & scheduler accordingly... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值