深度强化学习主流算法介绍(二):DPG系列

之前的文章可以看这里

深度强化学习主流算法介绍(一):DQN系列

相关论文在这里

图片

开始介绍DPG之前,先回顾下DQN系列

DQN直接训练一个Q Network 去估计每个离散动作的Q值,使用时选择Q值大的动作去执行(贪婪策略)

DQN可以处理每个离散的动作,对于连续动作空间上,虽然可以细分步长转化为更多的离散动作来做,但效果不好且训练成本倍增,由此学者们想到了Policy Gradient 确定策略梯度。

一、PG Policy Gradient

在这里插入图片描述

策略梯度算法是一种更为直接的方法,它让神经网络直接输出策略函数 π(s),即在状态s下应该执行何种动作。对于非确定性策略,输出的是这种状态下执行各种动作的概率值,即如下的条件概率

图片

对于连续性动作来说,一般使用随机高斯策略,网络的输入是智能体当前状态,网络的输出的高斯策略的均值和标准差,网络是一个拟合网络。

无论是连续动作还是离散动作,在使用PG时,必须先弄清下面公式,离散动作和连续动作最大的不同就在于

图片

连续动作PG算法网络模型如下

在这里插入图片描述

<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值