python前端streamlit模型部署

简单介绍使用前端streamlit框架快速部署本地模型:
1、模型训练:

import pandas as pd
# 流程整合
from sklearn.pipeline import make_pipeline, Pipeline
# 数据处理
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler, StandardScaler, MaxAbsScaler, RobustScaler
# 随机森林
from sklearn.ensemble import RandomForestClassifier
# 模型保存
import joblib
# Pipeline步骤显示
from sklearn import set_config
set_config(display='diagram')

# 加载数据集
data = pd.read_csv('train.csv')
data = data[["x1","x2","x3","x4","y"]]

# 管道建模 
pip = make_pipeline(SimpleImputer(strategy='constant', fill_value=-1),
                    RobustScaler(), # 针对异常值的归一化
                    RandomForestClassifier()
                    )
# 模型拟合
pip.fit(data.drop("y", axis=1), data["y"])

# 保存模型
joblib.dump(pip, './rfc_model.pkl')

2、streamlit模型部署,仅需几行代码即可,保存为test.py文件:

import streamlit as st
import joblib

st.header("本地模型部署")
st.subheader("模型预测")
# 模型加载
model = joblib.load('./rfc_model.pkl')
# 创建一个文本输入框  
text = st.text_input("请输入数据:")
# 切分转数字列表
pre_data = [float(i) for i in text.split()]

if st.button('提交'):
    # 调用模型进行预测
    pre_prob = model.predict_proba([pre_data])[0][1]
    pre_label = 1 if pre_prob > 0.5 else 0
    # 显示用户输入的内容  
    st.write(f'预测概率为:{pre_prob},预测标签为:{pre_label}')

3、启动服务:
终端执行命令:

streamlit run .\test.py

4、浏览器打开服务地址:
http://localhost:8501
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灯下夜无眠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值