带显著性的箱线图要怎么画?

箱线图的作用

箱线图(Boxplot)是一种简洁而有效的统计图形,用于可视化数据分布、中心趋势及其变异性,同时还可以揭示异常值。具体来说,箱线图的作用包括以下几个方面:

1. 描述数据分布

箱线图可以快速提供数据分布的概要信息:

  • 中位数:箱线的中间线表示中位数,揭示数据的中心趋势。
  • 四分位间距(IQR):箱体的上边缘和下边缘分别表示第 3 四分位数(Q3)和第 1 四分位数(Q1),表示中间 50% 数据的范围。
  • 上下须:通常表示不超过 1.5 倍 IQR 的数据范围,说明数据的扩展性。
  • 异常值:超出上下须范围的数据点,显示为孤立的点。
2. 比较多组数据的分布

箱线图非常适合于比较多个组的分布差异。通过不同组的箱线位置和大小,可以快速观察以下信息:

  • 组间的中位数是否有显著差异。
  • 不同组的离散程度(箱体高度和须的长度)。
  • 是否存在异常值。
3. 检测数据中的异常值

通过观察超出上下须范围的孤立点,可以快速定位可能的异常值或极端值。异常值可能反映数据输入错误,也可能是值得进一步分析的特殊现象。


绘制带显著性的箱线图

1. 数据准备

RT_data <- data.frame(
  sample_type = rep(c("风险决策", "跨期决策"), times = c(length(ParData1RC0$RT.mean), length(ParData1IC0$RT.mean))),
  RT_mean = c(ParData1RC0$RT.mean / 1000, ParData1IC0$RT.mean / 1000)
)

含义:

  • 目标:创建一个新的数据框 RT_data 用于绘图。
  • 解释
    • sample_type:用 rep() 函数重复生成两类样本标签 "风险决策" 和 "跨期决策",每类的重复次数分别为两组数据 ParData1RC0ParData1IC0 的长度。
    • RT_mean:分别取两组数据的平均反应时间列 RT.mean,并将单位从毫秒转换为秒(通过除以 1000)。

2. 绘图初始设置

p <- ggplot(RT_data, aes(x = sample_type, y = RT_mean, fill = sample_type)) +

含义:

  • 目标:定义图形的数据来源和美学映射(<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱做科研的桶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值