1.模块介绍
本文提出了一种新型基于注意尺度序列融合的 YOLO 框架,称为 ASF-YOLO,该框架结合空间与尺度信息,实现了高效且精确的细胞实例分割。在 YOLO 分割框架的基础上,设计了 尺度序列特征融合(SSFF)模块,用于增强多尺度信息提取能力;同时引入 三重特征编码器(TPE)模块,以融合不同尺度下的特征图,从而丰富目标细节表达。此外,提出一种 通道-位置注意机制(CPAM),用于集成 SSFF 与 TPE 模块,增强模型对小目标的通道依赖性与空间定位能力,进一步提升检测与分割性能。
在两个细胞图像数据集上的实验表明,ASF-YOLO 在分割精度与推理速度方面均优于现有先进方法。特别是在 2018 年数据科学碗数据集(Data Science Bowl 2018)上,ASF-YOLO 实现了 0.91 的 box mAP、0.887 的 mask mAP 和 47.3 FPS 的推理速度,展现出卓越的性能优势。
为了整合详细特征信息和多尺度特征信息,研究人员提出了CPAM(Channel and Position Attention Module)。CPAM的结构如图所示ÿ