利用scikit-learn进行FeatureSelection

1.单变量特征选择(Univariate feature selection)

>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.feature_selection import chi2
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> X_new = SelectKBest(chi2, k=2).fit_transform(X, y)
>>> X_new.shape
(150, 2)
除了使用SelectKBest之外,还可以使用SelectPercentile,她是按百分比进行选择的。


2.基于树的特征选择(Tree-based Feature Selection)

>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> clf = ExtraTreesClassifier()
>>> X_new = clf.fit(X, y).transform(X)
>>> clf.feature_importances_  
array([ 0.04...,  0.05...,  0.4...,  0.4...])
>>> X_new.shape               
(150, 2)

两种方法我都试过,感觉对于人群标签来说,第二种方法要好些。

参考资料:http://scikit-learn.org/dev/modules/feature_selection.html#feature-selection

                    http://scikit-learn.org/dev/auto_examples/ensemble/plot_forest_importances.html#example-ensemble-plot-forest-importances-py



### Scikit-learn 安装教程及基本用法 #### 一、安装 Scikit-learn 为了确保使用最新版本的 scikit-learn 库,可以通过 `pip` 工具来进行安装或升级: ```bash pip install --upgrade sklearn ``` 这条命令会自动下载并安装最新的稳定版 scikit-learn 及其依赖项[^1]。 #### 二、导入必要的模块 在 Python 脚本或交互环境中开始工作之前,先要导入所需的库。对于大多数机器学习任务来说,除了 scikit-learn 外,还经常需要用到 NumPy 和 Pandas 来处理数据结构。下面是一个典型的导入语句的例子: ```python import numpy as np import pandas as pd from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score, classification_report ``` 这段代码展示了如何从 scikit-learn 中引入不同的子模块用于加载内置的数据集、分割训练测试集合、标准化特征值范围等功能[^2]。 #### 三、加载和探索数据集 scikit-learn 提供了一些经典的小型数据集可以直接调用来做实验。比如鸢尾花(Iris)数据集就是一个很好的例子: ```python iris = datasets.load_iris() print(f'Feature names: {iris.feature_names}') print(f'Target name: {iris.target_names}') X, y = iris.data, iris.target ``` 这里通过 `datasets.load_iris()` 函数获取了鸢尾花数据集,并打印出了该数据集中所含有的属性名称及其类别标签名。 #### 四、准备训练与测试样本 通常情况下
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值