ACSC论文分享
任务介绍
ACSC的全名是Aspect Category Sentiment Classification。任务是给定aspect与句子,要求给出这个句子对于这个aspect的情感类别。这里需要注意的一点是ACSC中的aspect可能没有显示地出现在句子中(之后还会有一个ATSC系列)。
1.Aspect Based Sentiment Analysis with Gated Convolutional Networks
论文地址:
https://www.aclweb.org/anthology/P18-1234.pdf
论文思想:
论文结合了卷积神经网络与门机制Gated,首先给出模型图如下:
论文使用两个卷积网络,每个卷积网络由不同filter size的卷积核组成,从上面图中可以看出,红色的卷积核提取n-gram的语义特征,绿色的卷积核的输入包括n-gram特征与Aspect Embedding的求和,目的是建模Aspect与单词的关系。两个卷积核的公式如下:
从公式可以看出红色卷积的门为tanh,而绿色卷积的门为tanh。
因为绿色卷积的目的是建模单词与Aspect的关系,而Relu激活函数对于小于等于0的输入的输出为0,而大于0的输入不受影响,因此它可以输出aspect与单词的关联度,之后再将两个卷积的结果相乘便得到了仅与aspect相关的单词的表示。之后再用max pool的目的是去除那些对于句子情感无关紧要的情感特征,最后通过全连接层与softmax激活函数得到结果。
这篇论文还提出了另一种结构用于ATSC任务,下一篇博文中在继续介绍。
2.Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence
论文地址:
https://arxiv.org/pdf/1903.09588.pdf
论文思想:
这篇论文将预训练模型BERT引入到Aspect-Based Sentiment Analysis领域。利用aspect来构建附加句子,论文将ABSA任务转换为了对句子对的分类任务。论文中举出了4种构建附加句子的方法,分别是:
- sentence for QA-M
对于aspect “safety”,构建句子"what do you think of safety of it?". - sentence for NLI-M
借鉴于NLI(自然语言推理任务),构建附加句子"aspect" - sentence for QA-B
这种方法是对QA-M任务的改进,将情感类别也加入到了附加句子中,从而将任务改成了2分类。例如:针对aspect “safety"对应的情感极性是"positive”。构建的附加句子分为3种,分别是是"the polarity of the aspect safety is positive",“the polarity of the aspect safety is negative"和"the polarity of the aspect safety is none”,模型预测表情为yes和no - sentence for NLI-B
同样是将情感类别加入到了构建的句子中,比如:“safety-positive”,“safety-negative”,“safety-none”
作者将构建的附加句子加到原句子后面。通过这4种方法,作者将ABSA任务转换为了针对句子对的分类任务。
Multi-Instance Multi-Label Learning Networks for Aspect-Category Sentiment Analysis
论文地址:
https://arxiv.org/pdf/2010.02656.pdf
论文思想:
ABSA任务是要推测一个句子对于一个aspect的情感,很多已有的工作都没有考虑到句子对于一个aspect的情感是句子中可以推理出这个aspect的单词的情感聚合,如下图中drinks和food都可以表示food这个aspect。
根据这个想法,作者提出了如下的模型:
模型分为左右两部分,分别是aspect categories detection(ACD)与aspect category sentiment analysis(ACSA),其中ACD负责检测句子中那些单词可以预测出aspect,ACSC对这些单词的情感加权得到最终的预测结果,两个模块一起训练,整个模型的loss如下:
最后欢迎大家关注我的公众号NLP学习者