大语言模型系列-word2vec


前言

在前文大语言模型系列-总述已经提到传统NLP的一般流程:

创建语料库 => 数据预处理 => 分词向量化 => 特征选择 => 建模(RNN、LSTM等)

传统的分词向量化的手段是进行简单编码(如one-hot),存在如下缺点:

  • 如果词库过大, one-hot编码生成的向量会造成维度灾难
  • one-hot编码生成的向量是稀疏的,它们之间的距离相等,无法捕捉单词之间的语义关系。
  • one-hot编码是固定的,无法在训练过程中进行调整。

因此,出现了词嵌入(word embedding)的概念,通过word embedding模型生成的向量是密集的,具有相似含义的单词在向量空间中距离较近,可以捕捉单词之间的语义关系。并且Word Embedding模型的权重可以在训练过程中进行调整,以便更好地捕捉词汇之间的语义关系。

word2vec就是一种经典的词嵌入(word embedding)模型,由Tomas Mikolov等人在2013年提出,它通过学习将单词映射到连续向量空间中的表示,以捕捉单词之间的语义关系。


提示:以下是本篇文章正文内容,下面内容可供参考

一、word2vec的网络结构和流程

Word2Vec是轻量级的神经网络,其模型仅仅包括输入层、隐藏层和输出层,根据学习思路的不同,分为两种训练方式:Skip-Gram和CBOW(Continuous Bag of Words)。其中,Skip-gram是已知当前词的情况下预测上下文的表示,CBOW则是在已知上下文的情况下预测当前词的表示。通过这种表示学习,学得映射矩阵,将原始离散数据空间映射到新的连续向量空间(实际上起到了降维的作用)。

  • 将单词使用one-hot编码
  • 输入网络进行训练,获得参数矩阵 W V × N W_{V×N} WV×N
  • 输入层的每个单词one-hot编码x(V-dim)与矩阵W相乘,即 x ⋅ W V × N x \cdot W_{V×N} xWV×N,得到其word embedding(N-dim)

1.Skip-Gram模型

在这里插入图片描述

2.CBOW模型

在这里插入图片描述
在这里插入图片描述

二、word2vec的训练机制

假设语料库中有V个不同的单词,hidden layer取128,则word2vec两个权值矩阵维度都是[V,128],我们使用的语料库往往十分庞大,这也会导致权值矩阵的庞大,即神经网络的参数规模的庞大,在使用SGD对庞大的神经网络进行学习时,将是十分缓慢的。

word2vec提出两种加快训练速度的方式,一种是Hierarchical softmax,另一种是Negative Sampling。

1. Hierarchical softmax

和传统的神经网络输出不同的是,word2vec的hierarchical softmax结构是把输出层改成了一颗哈夫曼树,其中图中白色的叶子节点表示词汇表中所有的V个词,黑色节点表示非叶子节点,每一个叶子节点也就是每一个单词,都对应唯一的一条从root节点出发的路径。我们的目的是使的 w = w 0 w=w_0 w=w0这条路径的概率最大,即: P ( w = w 0 ∣ w I ) P(w=w_0|w_I) P(w=w0wI)最大,假设最后输出的条件概率是 P ( w = w 0 ∣ w 2 ) P(w=w_0|w_2) P(w=w0w2)最大,那么只需要去更新从根结点到 w 2 w_2 w2这一个叶子结点的路径上面节点的向量即可,而不需要更新所有的词的出现概率,这样大大的缩小了模型训练更新的时间。

在这里插入图片描述

ps:

  • 给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。
  • 我们知道在输入softmax之前,可以简单认为神经网络输出的大体含义为每个单词的频率,可以将其视为权值,然后通过哈夫曼树编码。这样在训练时,如果我们要计算Leaf2(观看)的概率,只需计算从Root到Leaf2路径上的节点的概率即可,而不需要考虑其他叶子节点,从而大大降低计算复杂度。
    在这里插入图片描述
    在这里插入图片描述

Hierarchical softmax的优点如下:

1)从利用softmax计算概率值改为利用Huffman树计算概率值,计算复杂度从O(V)变成了O(logV)
2)由于使用霍夫曼树是高频的词靠近树根,这样高频词需要更少的时间会被找到(贪心优化思想)

2. Negative Sampling

我们已经知道,对于每个训练样本,word2vec都需要计算并更新所有词汇表中的词的权重。这在大规模的词汇表上会变得非常昂贵,尤其是当词汇表非常大时。

Hierarchical softmax通过哈夫曼树,使得对于每个训练样本,只需要更新路径节点权重即可,大大减少了参数量和计算成本。Negative Sampling则通过只更新与当前训练样本相关的一小部分词的权重,以此来降低计算成本。具体步骤如下:

  1. 对于输入的中心词 w c w_c wc,设置窗口大小m,该窗口大小内的词为正样本(即 w c − m , . . . , w c + m w_{c-m},...,w_{c+m} wcm,...,wc+m,不包括 w c w_c wc
  2. 按照一定的概率分布 P ( w ~ ) P(\tilde w) P(w~)从词典中抽取K个负样本 w ~ 1 , w ~ 2 , . . . , w ~ k \tilde w_1, \tilde w_2,..., \tilde w_k w~1,w~2,...,w~k,那么{ w c , w ~ k w_c,\tilde w_k wc,w~k}为负样本,其中k=1,2,…,K
  3. 则给定中心词 w c w_c wc,预测 w j w_j wj j ∈ [ c − m , c + m ] j∈[c-m,c+m] j[cm,c+m])由如下事件集构成: w c w_c wc w j w_j wj共同出现,以及 w c w_c wc不和 w ~ k \tilde w_k w~k共同出现

Negative Sampling的优点如下:

1)将多分类问题转换成K+1个二分类问题,从而减少计算量,计算复杂度由O(V)变成了O(K),加快了训练速度。
2)保证模型训练效果,因为目标词只跟相近的词有关,没有必要使用全部的单词作为负例来更新它们的权重。


总结

和之前的方法相比,word2vec能够考虑上下文并获得低维的词向量表示,但word2vec无法解决多义词问题,没有语境信息,原因是word embedding是静态的(词和向量是一对一的关系),并且词嵌入和实际任务模型分开,使得整个训练过程不是端到端的。
在这里插入图片描述

  • 29
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
PyTorch是一个开源的Python机器学习库,可以用于创建神经网络模型和训练深度学习模型Word2Vec是一种用于处理自然语言处理任务的词嵌入模型。 在PyTorch中实现Word2Vec的步骤如下: 1. 数据准备:收集和预处理用于训练Word2Vec模型的文本数据。可以使用任何合适的文本数据集,如语料库或文章集。 2. 数据预处理:对文本数据应用必要的预处理步骤,如分词、去除停用词、标点符号等。 3. 构建词汇表:通过遍历预处理后的文本数据,创建一个词汇表,包含所有唯一的词汇。 4. 创建训练样本:将文本数据转换为模型需要的训练样本格式。一种常用的方法是创建一个滑动窗口,在滑动窗口内部的词汇用作输入,目标词汇用作输出。 5. 定义模型:使用PyTorch构建Word2Vec模型模型可以由一个嵌入层和一个线性层组成。嵌入层用于将输入词嵌入为低维向量,线性层用于将嵌入向量映射回词汇表。 6. 定义损失函数和优化器:为模型定义适当的损失函数和优化器。在Word2Vec中,常用的损失函数是负对数似然损失函数(Negative Log Likelihood Loss)。 7. 训练模型:使用训练数据和定义的损失函数和优化器进行模型训练。迭代训练样本,并更新模型参数以最小化损失函数。 8. 保存模型:在训练完成后,保存训练好的Word2Vec模型。 9. 应用模型:可以使用训练好的Word2Vec模型进行各种自然语言处理任务,如文本分类、语义相似度计算等。 总结:通过PyTorch实现Word2Vec模型需要进行数据准备和预处理、构建词汇表、创建训练样本、定义模型、损失函数和优化器、训练模型,最后保存和应用模型。使用Word2Vec可以将文本数据转换为向量表示,从而在自然语言处理任务中提供更好的特征表示。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学海一叶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值