高数 07.09 多元函数微分学习题01

多元函数微分学习题
一、考试内容
多元函数的概念、二元函数的极限和连续性,一阶偏导数与全微分,复合函数与隐函数的求导法,二阶偏导数,二元函数的极值
二、考试要求与基本知识
(1)了解多元函数的概念
了解二元函数的极限和连续性的概念
(2)理解偏导数的概念.了解全微分的概念
(3)会求二元函数的一阶、二阶偏导数,会求二元函数的全微分
(4)掌握复合函数一阶偏导数的求法
(5)会求由方程F(x, y, z) = 0所确定的隐函数z = z(x, y)的一阶偏导数
(6)了解二元函数极值存在的必要条件、充分条件,会求二元函数的极值
例题分析
(一)单项选择题
1.f(x,y)=1ln(x 2 +y 2 1) (  D  ) 
A.x 2 +y 2 >0B.x 2 +y 2 1C.x 2 +y 2 >1D.x 2 +y 2 >1,x 2 +y 2 2 
:ln(x 2 +y 2 1)0x 2 +y 2 2x 2 +y 2 1>0x 2 +y 2 >1 

2.z=f(x,y)D={(x,y)|0x1,0y1},f(x 2 ,y 2 )(  D  ) 
A.{(x,y)|0x1,0y1}B.{(x,y)|1x1,0y1}C.{(x,y)|0x1,1y1}D.{(x,y)|1x1,1y1} 

3.f(x,y)=xy    − − − − − −   (  D  ) 
A.x0,y0B.x>y0C.x>y   0D.xy   0 

4.f(x+y,xy)=x 2 y 2 ,f(x,y)=(  D  ) 
A.x 2 y 2 B.x 2 +y 2 C.(xy) 2 D.xy 
:x+y=u,xy=v,x=u+v2 ,y=uv2 f(u,bv)=(u+v2 ) 2 (uv2 ) 2 =uvf(x,y)=xy2f(x+y,xy)=x 2 y 2 =(x+y)(xy)f(x,y)=xy 

5.f(x,y)=dfracyx 2 +y 2 ,f(yx ,1)=(  B  ) 
A.yx+y B.xx+y C.yx+y 2  D.xx+y 2   
:f(yx ,1)=1yx +1 2  =xx+y  

6.f(xy,xy)=x 2 +y 2 ,f(x,y)x +f(x,y)y =(  C  ) 
A.x+2yB.x2yC.2x+2yD.2x2y 
:u=xy,v=xy,f(u,v)=2u+v 2 f(x,y)x +f(x,y)y =f(x,y)u ux +f(x,y)v vx +f(x,y)u uy +f(x,y)v vy =2y+2v+2x2v=2(x+y) 

9.z=x 2 +5y 2 6x+10y+6(  C  ) 
A.(3,1)B.(3,1)C.(3,1)D.(3,1) 
:zx =2x6=0,x=3zy =10y+10=0,y=1(3,1) 

10.f(x,y)(x 0 ,y 0 ),,(  B  ) 
A.f  x (x 0 ,y 0 )<0,f  y (x 0 ,y 0 )<0B.f  x (x 0 ,y 0 )=0,f  y (x 0 ,y 0 )=0C.f  x (x 0 ,y 0 )>0,f  y (x 0 ,y 0 )=0D.f  x (x 0 ,y 0 )=0,f  y (x 0 ,y 0 )<0 

(二)填空题
11.z=x 3 y 2 +xy 3 ,zx ∣ ∣ ∣  (1,1) =  2   − − −   
:zx =3x 2 y 2 +y 3 zx ∣ ∣ ∣  (1,1) =31 2 (1) 2 +(1) 3 =2 

12.z=e yx  ,zx +zy =  xyx 2  e yx     − − − − − − − − −   
:zx +zy =xyx 2  e yx   

13.z=cos(x 2 y 2 ),zy =  2ysin(x 2 y 2 )   − − − − − − − − − − − − − −   
:z=cosu,u=x 2 y 2 zy =dzdu ux =sin(x 2 y 2 )(2y)=2ysin(x 2 y 2 ) 

14.z=tan(yx +xy ),zy ∣ ∣ ∣  (1,1) =  0   − − −   
:u=yx ,v=xy ,z=tan(u+v)zy =zu uy +zv vy =sec 2 (u+v)11x +sec 2 (u+v)1xy 2  =sec 2 (yx +xy )(1x xy 2  )zy ∣ ∣ ∣  (1,1) =sec 2 (2)0=0 

15.z=x 3 y 5 +x 2 y, 2 zx 2  =  6xy 5 +2y   − − − − − − − − − −   
:zx =3x 2 y 5 +2xy 2 zx 2  =6xy 5 +2y 

16.z=ylnx, 2 zy 2  =  0   − − −   
:zy =lnx 2 zy 2  =0 

17.z=x 3 y 5 +x 2 y, 2 zxy =  15x 2 y 4 +2x   − − − − − − − − − − − −   
:zx =3x 2 y 5 +2xy 2 zxy =15x 2 y 4 +2x 

(三)解答题
18.f(x+y,xy)=x 2 +y 2 ,f(x,y) 
:u=x+y,v=xyf(x+y,xy)=x 2 +y 2 =(x+y) 2 2xy=u 2 2v=f(u,v) f(x,y)=x 2 2y 

19.z=arctanxy ,z=arctanxy  
:u=xy ,z=arctanuzx =dzdu ux =11+u 2  1y =yx 2 +y 2  zy =dzdu uy =11+u 2  xy 2  =xx 2 +y 2   

20.z=e xy cos(x 2 y),dz 
:u=e xy ,v=cos(x 2 y),z=uvzx =zu ux +zv vx =vye xy +u2x[sin(x 2 y)]=ycos(x 2 y)e xy +e xy 2x[sin(x 2 y)]=e xy [ycos(x 2 y)2xsin(x 2 y)]zy =zu uy +zv vy =vxe xy +u[sin(x 2 y)(1)]=cos(x 2 y)xe xy +e xy sin(x 2 y)=e xy [xcos(x 2 y)+sin(x 2 y)]dz=zx dx+zy dy=e xy [ycos(x 2 y)2xsin(x 2 y)]dx+e xy [xcos(x 2 y)+sin(x 2 y)]dy 

21.z=arcsin(yx   ),dz 
:z=arcsin(u),u=yx   dz=dzdu ux dx+dzdu uy dy=11u 2  − − − − −    [y2x    dx+x   dy]=11xy 2  − − − − − −    [ydx+2xdy2x    ]=ydx+2xdy2xx 2 y 2  − − − − − − −     

22.z=(x 2 +y 2 )e xy ,zx ,zy  
:u=x 2 +y 2 ,v=e xy ,z=uvzx =zu ux +zv vx =v2x+uye xy =e xy 2x+(x 2 +y 2 )ye xy =(2x+x 2 y+y 3 )e xy zy =zu uy +zv vy =v2y+uxe xy =e xy 2y+(x 2 +y 2 )xe xy =(2y+x 3 +xy 2 )e xy  

23.z=(x 2 +y 2 )e x 2 +y 2 xy  ,zx  
:zx =e x 2 +y 2 xy  x (x 2 +y 2 )+(x 2 +y 2 )x (e x 2 +y 2 xy  )=2xe x 2 +y 2 xy  +(x 2 +y 2 )e x 2 +y 2 xy  x (x 2 +y 2 xy )=2xe x 2 +y 2 xy  +(x 2 +y 2 )e x 2 +y 2 xy  x (xy +yx )=2xe x 2 +y 2 xy  +(x 2 +y 2 )e x 2 +y 2 xy  (1y yx 2  )=x 4 +2x 3 yy 4 yx 2  e x 2 +y 2 xy   

24.f(u,v),z=f(2x+3y,e xy ),zx ,zy  
:u=2x+3y,v=e xy zx =zu ux +zv vx =fu 2+fv ye xy =2fu +ye xy fv zy =zu uy +zv vy =fu 3+fv xe xy =3fu +xe xy fv  

25.f(u,v),z=f(x,xcosy),zx ,zy  
:u=x,v=xcosyzx =zu ux +zv vx =fu 1+fv cosy=fu +cosyfv zy =zu uy +zv vy =fu 0+fv x(siny)=xsinyfv  

26.z=1x f(xy)+yφ(2xy),fφ,zx ,zy  
:zx =x [1x f(xy)]+x [yφ(2xy)]=[1x 2  f(xy)+1x x f(xy)]+yx [φ(2xy)]=1x 2  f(xy)+1x yf  x (xy)+y2φ  x (2xy)=1x 2  f(xy)+yx f  x (xy)+2yφ  x (2xy)zx =y [1x f(xy)]+y [yφ(2xy)]=1x y [f(xy)]+1φ(2xy)+yy [φ(2xy)]=1x f  y (xy)x+1φ(2xy)+yφ  y (2xy)(1)=f  y (xy)+φ(2xy)yφ  y (2xy) 

27.z=z(x,y)x 2 +z 2 =2ye x ,zx ,zy  
:F(x,y)=x 2 +z 2 2ye x F  x =2x2ye x F  y =2e x F  z =2zzx =F  x F  z  =2x2ye x 2z =ye x xz zy =F  y F  z  =2e x 2z =e x z  

28.z=z(x,y)xz=y+e z ,zx  
:F(x,y,z)=xzye z =0F  x =zF  y =1F  z =xe z zx =F  x F  z  =ze z x  

29.z=z(x,y)xz =lnzy ,zy  
:F(x,y,z)=xz lnzy =0F  y =1zy  (zy 2  )=1y F  z =xz 2  1zy  1y =x+zz 2  zy =F  y F  z  =1y x+zz 2   =z 2 y(x+z)  

32.z=e y(x 2 +y 2 ) ,dz 
:zx =e y(x 2 +y 2 ) x [y(x 2 +y 2 )]=e y(x 2 +y 2 ) 2xyzy =e y(x 2 +y 2 ) y [y(x 2 +y 2 )]=e y(x 2 +y 2 ) (x 2 +3y 2 )dz=zx dx+zy dy=e y(x 2 +y 2 ) [2xydx+(x 2 +3y 2 )dy] 

33.z=f(2x+3y,e xy ),f(u,v),dz 
:u=2x+3y,v=e xy ,zx =zu ux +zv vx =f  u 2+f  v ye xy =2f  u +ye xy f  v zy =zu uy +zv vy =f  u 3+f  v xe xy =3f  u +xe xy f  v dz=zx dx+zy dy=(2f  u +ye xy f  v )dx+(3f  u +xe xy f  v )dy 

34.f(x,y)=x 3 +8y 3 6xy+5 
:f  x =3x 2 6yf  y =24y 2 6xf  x =0,f  y =0x 1 =0,x 2 =1y 1 =0,y 2 =12 (0,0),(1,12 )f  xx =6xf  xy =6f  yy =48y(0,0),A=0,B=6,C=0,ACB 2 =36<0,(1,12 ),A=6,B=6,C=24ACB 2 =108>0,A>0,F(1,12 )=4 

35.f(x,y)=2x 2 +ax+xy 2 +by+2(1,1),ab,f(1,1)? 
:f(x,y)f  x =4x+a+y 2 f  y =2xy+b(1,1):41+a+(1) 2 =021(1)+b=0a=5,b=2:f  x =4x5+y 2 f  y =2xy+2:f  xx =4f  xy =2yf  yy =2x(1,1),A=4,B=2,C=2;ACB 2 =4>0,A>0,,f(1,1)=2 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值