二元函数的连续性

二元连续的定义

  • f f f是定义在点集 D ⊂ R 2 D\subset R^2 DR2上的二元
  • P 0 ∈ D ( 它 是 D 的 聚 点 或 孤 立 点 ) P_0\in D(它是D的聚点或孤立点) P0D(D)
  • 对于 ∀ ε > 0 , 总 ∃ δ > 0 , 只 要 P ∈ U ( P 0 ; δ ) ∩ D , \forall\varepsilon>0,总\exist\delta>0,只要P\in U(P_0;\delta)\cap D, ε>0,δ>0,PU(P0;δ)D,就有 ∣ f ( P ) − f ( P 0 ) ∣ < ε |f(P)-f(P_0)|<\varepsilon f(P)f(P0)<ε则称 f f f关于集合D在点 P 0 P_0 P0连续

注意~

  • P 0 P_0 P0是孤立点,则 P 0 P_0 P0肯定是 f f f的连续点,因为 U ( P 0 ; δ ) ∩ D U(P_0;\delta)\cap D U(P0;δ)D只有 P 0 P_0 P0
  • 若是聚点,则以上定义等价于 lim ⁡ P → P 0 , P ∈ D f ( P ) = f ( P 0 ) \lim\limits_{P\to P_0,P\in D}f(P)=f(P_0) PP0,PDlimf(P)=f(P0)
  • P 0 P_0 P0是聚点,而上式不成立,则称 P 0 P_0 P0 f f f的不连续点或间断点;
    4.若极限存在只是 ≠ f ( P 0 ) \ne f(P_0) =f(P0),则称该点为可去间断点

增量

  • P 0 ( x 0 , y 0 ) , P ( x , y ) ∈ D P_0(x_0,y_0),P(x,y)\in D P0(x0,y0),P(x,y)D △ x = x − x 0 , △ y = y − y 0 , \triangle x=x-x_0,\triangle y=y-y_0, x=xx0,y=yy0,
  • 全增量 △ z = △ f ( x 0 , y 0 ) \triangle z=\triangle f(x_0,y_0) z=f(x0,y0) = f ( x , y ) − f ( x 0 , y 0 ) =f(x,y)-f(x_0,y_0) =f(x,y)f(x0,y0) = f ( x 0 + △ x , y 0 + △ y ) − f ( x 0 , y 0 ) =f(x_0+\triangle x,y_0+\triangle y)-f(x_0,y_0) =f(x0+x,y0+y)f(x0,y0)以上都称为 f f f在点 P 0 P_0 P0的全增量
    • 用增量定义连续:当 lim ⁡ ( △ x , △ y ) → ( 0 , 0 ) , ( x , y ) ∈ D △ z = 0 \lim\limits_{(\triangle x,\triangle y)\to(0,0),(x,y)\in D}\triangle z=0 (x,y)(0,0),(x,y)Dlimz=0
  • 偏增量:在全增量中令 △ x = 0 \triangle x=0 x=0 △ y = 0 \triangle y=0 y=0,即 △ x f ( x 0 , y 0 ) = f ( x 0 + △ x , y 0 ) − f ( x 0 , y 0 ) \triangle_xf(x_0,y_0)=f(x_0+\triangle x,y_0)-f(x_0,y_0) xf(x0,y0)=f(x0+x,y0)f(x0,y0) △ y f ( x 0 , y 0 ) = f ( x 0 , y 0 + △ y ) − f ( x 0 , y 0 ) \triangle_yf(x_0,y_0)=f(x_0,y_0+\triangle y)-f(x_0,y_0) yf(x0,y0)=f(x0,y0+y)f(x0,y0)
    • 若偏增量的极限为0,如 lim ⁡ △ x → 0 △ x f ( x 0 , y 0 ) = 0 \lim\limits_{\triangle x\to0}\triangle_xf(x_0,y_0)=0 x0limxf(x0,y0)=0表示固定 y = y 0 y=y_0 y=y0时, f ( x , y 0 ) f(x,y_0) f(x,y0)作为x的一元函数在 x 0 x_0 x0处连续
    • f ( x , y ) f(x,y) f(x,y)在内点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续,可以推出 f ( x , y 0 ) f(x,y_0) f(x,y0) x 0 x_0 x0处连续, f ( x 0 , y ) f(x_0,y) f(x0,y) y 0 y_0 y0处连续

复合函数的连续性

  • u = φ ( x , y ) , v = ψ ( x , y ) u=\varphi(x,y),v=\psi(x,y) u=φ(x,y),v=ψ(x,y) x y xy xy平面上的点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)某邻域有定义且在该点连续
  • f ( u , v ) f(u,v) f(u,v) u v uv uv平面上的点 Q 0 ( u 0 , v 0 ) Q_0(u_0,v_0) Q0(u0,v0)某领域有定义,也在 Q 0 Q_0 Q0连续
  • u 0 = φ ( x 0 , y 0 ) , v 0 = ψ ( x 0 , y 0 ) u_0=\varphi(x_0,y_0),v_0=\psi(x_0,y_0) u0=φ(x0,y0),v0=ψ(x0,y0)
  • 则, g ( x , y ) = f [ φ ( x , y ) , ψ ( x , y ) ] g(x,y)=f[\varphi(x,y),\psi(x,y)] g(x,y)=f[φ(x,y),ψ(x,y)] P 0 P_0 P0处也连续

f ( u , v ) f(u,v) f(u,v) Q 0 Q_0 Q0连续可以描述为:
∀ ε > 0 , ∃ η > 0 \forall\varepsilon>0,\exist\eta>0 ε>0,η>0,使得当 ∣ u − u 0 ∣ < η , ∣ v − v 0 ∣ < η |u-u_0|<\eta,|v-v_0|<\eta uu0<η,vv0<η时,有 ∣ f ( u , v ) − f ( u 0 , v 0 ) ∣ < ε |f(u,v)-f(u_0,v_0)|<\varepsilon f(u,v)f(u0,v0)<ε

有界闭域上连续函数的性质

有界性and最大最小值定理

f f f在有界闭域 D ⊂ R 2 D\subset R^2 DR2连续,则

  • f f f在D上有界
  • 且能取到最大最小值

证明

  • 先证明 f f f的有界性:
    • 反证,假设无界,则对所有正整数 n n n,必 ∃ P n ∈ D \exist P_n\in D PnD,使得 ∣ f ( P n ) ∣ > n , n = 1 , 2 , . . . (1) |f(P_n)|>n,n=1,2,...\tag{1} f(Pn)>n,n=1,2,...(1)
    • 于是得到一有界点列 { P n } ⊂ D \{P_n\}\subset D {Pn}D,且该点列有无穷多个点
    • 由有界无限点列必存在收敛的子列得, { P n } \{P_n\} {Pn}存在收敛子列 { P n k } \{P_{n_k}\} {Pnk},设 lim ⁡ k → ∞ P n k = P 0 \lim\limits_{k\to\infty}P_{n_k}=P_0 klimPnk=P0由于D是闭域,因此 P 0 ∈ D P_0\in D P0D(这说明,若D是开域,则有可能收敛到界点)
    • 由于 f f f在D上连续,所以有 lim ⁡ k → ∞ f ( P n k ) = f ( P 0 ) \lim\limits_{k\to\infty}f(P_{n_k})=f(P_0) klimf(Pnk)=f(P0)这与不等式(1)矛盾,所以 f f f在D上有界
  • 下证 f f f能取到最大最小值:
    • m = i n f f ( D ) , M = s u p f ( D ) m=\mathop{inf}f(D),M=supf(D) m=inff(D),M=supf(D)这里证明必存在一点 Q ∈ D Q\in D QD,使得 f ( Q ) = M f(Q)=M f(Q)=M最小值类似
    • 依然反证,假设不然,则对 ∀ P ∈ D \forall P\in D PD,都有 M − f ( P ) > 0 M-f(P)>0 Mf(P)>0构造一正值函数 F ( P ) = 1 M − f ( P ) F(P)=\frac 1{M-f(P)} F(P)=Mf(P)1由于F在D上也连续,由以上证明可知,F在D上有界
    • 又∵ f f f在D上不能达到上确界 M M M,所以存在收敛点列 { P n } ⊂ D , \{P_n\}\subset D, {Pn}D,使得 lim ⁡ n → ∞ f ( P n ) = M \lim\limits_{n\to\infty}f(P_n)=M nlimf(Pn)=M这样的话就有 lim ⁡ n → ∞ F ( P ) = + ∞ \lim\limits_{n\to\infty}F(P)=+\infty nlimF(P)=+与F有界的结论矛盾了,所以证得 f f f在D上可以取到最大值

一致连续性

f f f在有界闭域 D ⊂ R 2 D\subset R^2 DR2连续,则

  • f f f在D上一致连续
  • 即,对 ∀ ε > 0 , ∃ δ ( ε ) > 0 , 对 ∀ P , Q , \forall\varepsilon>0,\exist \delta(\varepsilon)>0,对\forall P,Q, ε>0,δ(ε)>0,P,Q,只要满足 ρ ( P , Q ) < δ \rho(P,Q)<\delta ρ(P,Q)<δ,就有 ∣ f ( P ) − f ( Q ) ∣ < ε |f(P)-f(Q)|<\varepsilon f(P)f(Q)<ε

证明

  • 用聚点定理
  • 套话系列:若 f f f在D上连续却不一致连续,则
    • ∃ ε 0 > 0 , \exist\varepsilon_0>0, ε0>0,对于任意小的 δ > 0 \delta>0 δ>0,比如 δ = 1 n , n = 1 , 2 , . . . , \delta=\frac 1n,n=1,2,..., δ=n1,n=1,2,...,,总有相应的 P n , Q n ∈ D P_n,Q_n\in D Pn,QnD
    • 即使 ρ ( P n , Q n ) < 1 n \rho(P_n,Q_n)<\frac 1n ρ(Pn,Qn)<n1
    • 但是 ∣ f ( P n ) − f ( Q n ) ∣ ≥ ε 0 |f(P_n)-f(Q_n)|\ge \varepsilon_0 f(Pn)f(Qn)ε0
  • 由于 D D D为有界闭域,故存在收敛子列 { P n k } ∈ { P n } \{P_{n_k}\}\in \{P_n\} {Pnk}{Pn},设 P n k → P 0 ∈ D ( k → ∞ ) P_{n_k}\to P_0\in D(k\to\infty) PnkP0D(k)
  • 方便起见,在 { Q n } \{Q_n\} {Qn}中取出与 P n k P_{n_k} Pnk相同的子列 { Q n k } \{Q_{n_k}\} {Qnk},则有 0 ≤ ρ ( P n k , Q n k ) < 1 n k → 0 , k → ∞ 0\le\rho(P_{n_k},Q_{n_k})<\frac 1{n_k}\to0,k\to\infty 0ρ(Pnk,Qnk)<nk10,k
  • 所以有 lim ⁡ k → ∞ Q n k = lim ⁡ k → ∞ P n k = P 0 \lim\limits_{k\to\infty}Q_{n_k}=\lim\limits_{k\to\infty}P_{n_k}=P_0 klimQnk=klimPnk=P0
  • 又∵ f f f P 0 P_0 P0处连续,所以有 lim ⁡ k → ∞ ∣ f ( P n k ) − f ( Q n k ) ∣ \lim\limits_{k\to\infty}|f(P_{n_k})-f(Q_{n_k})| klimf(Pnk)f(Qnk) = ∣ f ( P 0 ) − f ( P 0 ) ∣ = 0 =|f(P_0)-f(P_0)|=0 =f(P0)f(P0)=0
  • ∣ f ( P n ) − f ( Q n ) ∣ ≥ ε 0 > 0 |f(P_n)-f(Q_n)|\ge \varepsilon_0>0 f(Pn)f(Qn)ε0>0矛盾,所以 f f f在D上一致连续

介值性定理

f f f区域 D ⊂ R 2 D\subset R^2 DR2连续

  • P 1 , P 2 P_1,P_2 P1,P2为D上任意两点
  • f ( P 1 ) < f ( P 2 ) f(P_1)<f(P_2) f(P1)<f(P2)
  • μ \mu μ满足 f ( P 1 ) < μ < f ( P 2 ) f(P_1)<\mu<f(P_2) f(P1)<μ<f(P2)
  • 则必存在一点 P 0 ∈ D , 使 得 P_0\in D,使得 P0D,使 f ( P 0 ) = μ f(P_0)=\mu f(P0)=μ

证明

  • 注意,这里一定要是区域,因为要用到区域的连通性质,而有界性定理和一致连续定理其实条件都可以改成有界闭集
  • 做辅助函数 F ( P ) = f ( P ) − μ F(P)=f(P)-\mu F(P)=f(P)μ可得:F在D上连续,且有 F ( P 1 ) < 0 , F ( P 2 ) > 0 F(P_1)<0,F(P_2)>0 F(P1)<0,F(P2)>0
  • 不妨设 P 1 , P 2 P_1,P_2 P1,P2是D的内点,下面证明必存在 P 0 ∈ D , P_0\in D, P0D,使得 F ( P 0 ) = μ F(P_0)=\mu F(P0)=μ
    • 由于D为区域,所以肯定有一段有限折线连接 P 1 , P 2 P_1,P_2 P1,P2,若有一连接点的函数值=0.则定理可证,否则从一端开始逐段检查线段,必存在某段,F在两端函数值异号
    • 设连接 P 1 ( x 1 , y 1 ) , P 2 ( x 2 , y 2 ) P_1(x_1,y_1),P_2(x_2,y_2) P1(x1,y1),P2(x2,y2)的直线段含于D,方程为 { x = x 1 + t ( x 2 − x 1 ) y = y 1 + t ( y 2 − y 1 ) , 0 ≤ t ≤ 1 \begin{cases}x=x_1+t(x_2-x_1)\\y=y_1+t(y_2-y_1)\end{cases},0\le t\le1 {x=x1+t(x2x1)y=y1+t(y2y1),0t1
    • 在该直线段上,F表示为关于t的复合 G ( t ) = F ( x 1 + t ( x 2 − x 1 ) , y 1 + t ( y 2 − y 1 ) ) G(t)=F(x_1+t(x_2-x_1),y_1+t(y_2-y_1)) G(t)=F(x1+t(x2x1),y1+t(y2y1)) 0 ≤ t ≤ 1 0\le t\le1 0t1啊!这就构造好了一个 [ 0 , 1 ] [0,1] [0,1]上的一元连续函数啦,可以用介值定理了! F ( P 1 ) = G ( 0 ) < 0 < G ( 1 ) = F ( P 2 ) F(P_1)=G(0)<0<G(1)=F(P_2) F(P1)=G(0)<0<G(1)=F(P2)根的存在性定理,在(0,1)内存在一点 t 0 t_0 t0,使得 G ( t 0 ) = 0 G(t_0)=0 G(t0)=0,记 x 0 = x 1 + t 0 ( x 2 − x 1 ) x_0=x_1+t_0(x_2-x_1) x0=x1+t0(x2x1) y 0 = y 1 + t 0 ( y 2 − y 1 ) y_0=y_1+t_0(y_2-y_1) y0=y1+t0(y2y1)就有 P 0 ∈ D P_0\in D P0D使得 F ( P 0 ) = G ( t 0 ) = 0 , f ( P 0 ) = μ F(P_0)=G(t_0)=0,f(P_0)=\mu F(P0)=G(t0)=0,f(P0)=μ
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页